Citation: XU Jun-chao, YU Yan, ZHANG Jun, MENG Qiang, ZHONG Hui, YIN Yan-shan. Growth characteristics of biomass-fired PM2.5 with vapor condensation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 507-512. shu

Growth characteristics of biomass-fired PM2.5 with vapor condensation

  • Corresponding author: ZHANG Jun, junzhang@seu.edu.cn
  • Received Date: 23 November 2015
    Revised Date: 11 January 2016

Figures(7)

  • The growth characteristic of biomass-fired PM2.5 with vapor condensation was studied. A growth tube was employed to investigate the growth performance of PM2.5 at various temperatures of water, initial concentrations of particles, residence times and surfactants. The results show that the growth performance of PM2.5 from biomass combustion is better than that of coal-fired PM2.5 with vapor condensation. Furthermore, both the water temperature increase and the residence time delay benefit the growth of PM2.5. Unlike the growth of PM2.5 from coal combustion, the growth of small size of particles is seldom affected by the initial particles concentration. However, with a certain amount of surfactant addition, the particles can all grow up to 1 μm .
  • 加载中
    1. [1]

      JI J, HWANG J, BAE G, KIM Y. Particle charging and agglomeration in DC and AC electric fields[J]. J Electrost, 2004,60(1):57-68.  

    2. [2]

      YAN Jin-pei, CHEN Li-qi, YANG Lin-jun. Agglomeration removal of fine particles at super-saturation steam by using acoustic wave[J]. CIESC J, 2014,65(8):3243-3249.  

    3. [3]

      LIU Yong, ZHAO Wen, LIU Rui, YANG Lin-jun. Improving removal of PM2.5 by electrostatic precipitator with chemical agglomeration[J]. CIESC J, 2014,65(9):3609-3616.  

    4. [4]

      XU Jun-chao, ZHANG Jun, ZHOU Lu-lu, YANG Lin-jun, YUAN Zhu-lin. Prospect in vapor condensation for PM2.5 abatement[J]. Mod Chem Ind, 2014,34(3):20-24.

    5. [5]

      YOSHIDA T, KOUSAKA Y, OKUYAMA K. Growth of aerosol particles by condensation[J]. Ind Eng Chem Fund, 1976,15(1):37-41. doi: 10.1021/i160057a007

    6. [6]

      HEIDENREICH S, F E. Condensational droplet growth as a preconditioning technique for the separation of submicron particles from gases[J]. Chem Eng Process, 1995,34(3):235-244. doi: 10.1016/0255-2701(94)04009-5

    7. [7]

      YAN Jin-pei, YANG Lin-jun, ZHANG Xia, SUN Lu-juan, ZHANG Yu, SHEN Xiang-lin. Experimental study on separation of inhalable particles from coal combustion by heterogeneous condensation enlargement[J]. Proc Chin Soc Electr Eng, 2007,29(35):12-16.  

    8. [8]

      ZHANG Xia, YANG Lin-jun, SUN Lu-juan, ZHANG Yu, YAN Jin-pei, SHEN Xiang-lin. Experimental study on removal of PM2.5 from combustion by vapor heterogeneous condensation[J]. J Southeast Univ (Nat Sci Ed), 2008,38(1):81-85.  

    9. [9]

      FAN F, YANG L, YAN J, YUAN Z. Numerical analysis of water vapor nucleation on PM2.5 from municipal solid waste incineration[J]. Chem Eng J, 2009,146(2):259-265. doi: 10.1016/j.cej.2008.06.009

    10. [10]

      TAMMARO M, DI NATALE F, SALLUZZO A, LANCIA A. Heterogeneous condensation of submicron particles in a growth tube[J]. Chem Eng Sci, 2012,74:124-134. doi: 10.1016/j.ces.2012.02.023

    11. [11]

      ZHOU Lu-lu, ZHANG Jun, XU Jun-chao, YU Yan, MENG Qiang, YANG Lin-jun, YUAN Zhu-lin. Growth of fine particulates of typical coal ash components in supersaturated water environment[J]. J Fuel Chem Technol, 2015,43(6):754-760.  

    12. [12]

      ZHANG Xia, YAN Jin-pei, YANG Lin-jun, SUN Lu-juan, ZHANG Yu, SHEN Xiang-lin. Removal of fine particles from coal combustion in scrubber by heterogeneous condensation[J]. J Fuel Chem Technol, 2009,37(9):56-59.  

    13. [13]

       

    14. [14]

      TAMMARO M. Heterogeneous condensation for submicronic particles abatement[D]. Università degli studi di Napoli Federico II, 2010. 

    15. [15]

      SONG Y, ZHANG Y H, XIE S D, ZENG L M, ZHENG M, SALMON L G, SHAO M, SLANINA S. Source apportionment of PM2.5 in Beijing by positive matrix factorization[J]. Atmos Environ, 2006,40(8):1526-1537. doi: 10.1016/j.atmosenv.2005.10.039

    16. [16]

    17. [17]

      WANG Quan-bin, XU Ming-hou, YAO Hong, DAI Li. Co-combustion characteristics of biomass with coal and Its effect on inhaled particulate matters emission[J]. Proc CSEE, 2007,27(5):7-12.  

    18. [18]

      GORBUNOV B, HAMILTON R. Water nucleation on aerosol particles containing both soluble and insoluble substances[J]. J Aerosol Sci, 1997,28(2):239-248. doi: 10.1016/S0021-8502(96)00070-5

    19. [19]

      YE Yi-jie. Research on the characteristics of biomass ash and agglomeration mechanism[D]. Wuhan: Huazhong University of Science and Technology, 2007.

    20. [20]

      FAN Feng-xian, YANG Lin-jun, YUAN Zhu-lin, YAN Jin-pei. Numerical analysis of water vapor nucleation on fine particles[J]. J Southeast Univ (Nat Sci Ed), 2007,37(5):833-838.  

    21. [21]

      XU Jun-chao. Fine particle growth by nucleation and condensation experiment system design and characteristic research[D]. Nanjing: Southeast University, 2014.

    22. [22]

      ZHOU Lu-lu. Experimental research on the characteristic of growth by vapor condensation of coal ash particles[D]. Nanjing: Southeast University, 2015.

    23. [23]

      KALIKMANOV V I. Nucleation Theory[M]. Berlin: Springer Netherlands, 2013.

    24. [24]

      LATHEM T L, NENES A. Water vapor depletion in the DMT continuous-flow CCN chamber: Effects on supersaturation and droplet growth[J]. Aerosol Sci Technol, 2011,45(5):604-615. doi: 10.1080/02786826.2010.551146

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    5. [5]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    6. [6]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    7. [7]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    8. [8]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    9. [9]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    10. [10]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    12. [12]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    13. [13]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    14. [14]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    15. [15]

      Yajun HouChuanzheng ZhuQiang WangXiaomeng ZhaoKun LuoZongshuai GongZhihao Yuan . ~2.5 nm pores in carbon-based cathode promise better zinc-iodine batteries. Chinese Chemical Letters, 2024, 35(5): 108697-. doi: 10.1016/j.cclet.2023.108697

    16. [16]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    17. [17]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    18. [18]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    19. [19]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    20. [20]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

Metrics
  • PDF Downloads(1)
  • Abstract views(705)
  • HTML views(42)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return