Citation: LIU Lang, LIU Qing-cai, MENG Fei, YANG Jian, KONG Ming, ZHAO Dong, ZHU Bo-hong, REN Shan. Reaction activity and structural characterizations of sintered return fine oxyen carriers in chemical-looping combustion[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1177-1184. shu

Reaction activity and structural characterizations of sintered return fine oxyen carriers in chemical-looping combustion

  • Corresponding author: LIU Qing-cai, liuqc@cqu.edu.cn
  • Received Date: 31 March 2016
    Revised Date: 4 July 2016

Figures(10)

  • The reactivity and structural characterizations of the sintered iron ore in redox cycles were investigated. The sintered return fines were selected as oxygen carriers and the chemical looping combustion was tested in a fluidized bed with a reducing atmosphere of 95% methane. The characterizations of structural and physical properties of the sintered raw materials and the reduced and oxidative regenerated samples were conducted. The results reveal that during the initial oxidation cycle, the oxygen carrying capacity and reaction activity of the sinter are improved remarkably. The specific surface area of the sinter increases significantly in the first 25 cycles, which may be one of the main reasons for the reactivity increase of the sinter. During the recycling process, some cracks are formed on the surface of sintered return fines and gradually get development. The Raman results indicate that the new crystalline phase, lepidocrocite (γ-FeOOH), is formed, which will decrease the oxygen carrying capacity of the oxygen carrier. When the methane is used as the reducing gas, there is no carbon deposition on the surface.
  • 加载中
    1. [1]

      STEWART C, HESSAMI M A. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach[J]. Energy Convers Manage, 2005,46(3):403-420. doi: 10.1016/j.enconman.2004.03.009

    2. [2]

      FU Wei-xin, LIU Xiao. Hydrogen production by natural gas reforming andits application to fuel cell[J]. Gas Heat, 2013,33(6):16-21.  

    3. [3]

      SU Jun-lin, PAN Liang, ZHU Chang-min. Research status and development of oxygen-enriched combustion technology[J]. Ind Boiler, 2008(3):1-4.  

    4. [4]

      MAO Ru-yu, FANG Meng-xiang, LUO Zhong-yang, WU Xue-cheng, QIN Ke-fa. Experimental study on oxygen-enriched combustion technology on circulating fluidized bed test-facility[J]. Boiler Technol, 2004,35(6):27-31.  

    5. [5]

      SAMANTA A, ZHAO A, SHIMIZU G K, SARKAR P, GUPTA R. Post-combustion CO2 capture using solid sorbents:A review[J]. Ind Eng Chem Res, 2012,51(4):1438-1463. doi: 10.1021/ie200686q

    6. [6]

      ZHOU Kang-han, LU Xi-yu, AI Shang-kun, LIU Cheng-liang. The study on CO2 concentration in solid amine CO2 control system[J]. Space Med Eng, 2000,13(3):179-182.

    7. [7]

      HUANG Yan. The hydrophobic zeolite molecular sieves and its application in CO2 control technology[J]. Appl Chem Ind, 2002,31(3):12-15.  

    8. [8]

      SHEN Lai-hong, XIAO Jun, XIAO Rui, ZHANG Hui. Chemical looping combusiton of coalin inteconntected fluidized beds of CaSO4 oxygen carrier[J]. Proc CSEE, 2007,27(2):69-74.

    9. [9]

      LI Zhen-shan, HAN Hai-mian, CAI Ning-sheng. Research status and progress of chemical-looping combustion[J]. Chin Soc Power Eng, 2006,26(4):538-543.

    10. [10]

      JIN Hong-guang, HONG Hui, HAN Tao. Research progress on energy environment system of chemical-looping combustion[J]. Chin Sci Bull, 2008,53(24):2994-3005.  

    11. [11]

      MERKEL T C, LIN H, WEI X, BAKER R. Power plant post-combustion carbon dioxide capture:An opportunity for membranes[J]. J Membr Sci, 2010,359(1):126-139.

    12. [12]

      KANNICHE M, GROS B R, JAUD P, VALLE M J, AMANN J M, BOUALLOU C. Pre-combustion, post-combustion and oxy-combustion in thermal power plant for CO2 capture[J]. Appl Therm Eng, 2010,30(1):53-62. doi: 10.1016/j.applthermaleng.2009.05.005

    13. [13]

      SCHOLES C A, SMITH K H, KENTISH S E, STEVENS G W. CO2 capture from pre-combustion processes-strategies for membrane gas separation[J]. Int J Greenh Gas Con, 2010,4(5):739-755. doi: 10.1016/j.ijggc.2010.04.001

    14. [14]

      YANG Ming-ming, LIU Yong-zhuo, JIA Wei-hua, HU Xiu-de, GUO Qing-jie. Preparation and performance of the Fe2O3/ATP oxygen carriers in coal chemical looping combustion[J]. J Fuel Chem Technol, 2015,43(2):167-176.  

    15. [15]

      CHEN Ding-qian, SHEN Lai-hong, XIAO Jun, SONG Tao, GU Hai-ming, ZHANG Si-wen. Experimental investigation of hematite oxygen carrier decorated with NiO for chemical looping combustion of coal[J]. J Fuel Chem Technol, 2012,40(3):267-272. doi: 10.1016/S1872-5813(12)60015-2

    16. [16]

      SARSHAR Z, KLEITZ F, KALIAGUINE S. Novel oxygen carriers for chemical looping combustion:La1-xCexBO3(B=Co, Mn) perovskites synthesized by reactive grinding and nanocasting[J]. Energy Environ Sci, 2011,4(10):4258-4269. doi: 10.1039/c1ee01716k

    17. [17]

      PENTHOR S, MAYER K, KERN S, KITZLER H, WÖSS D, PRÖLL T, HOFBAUER H. Chemical-looping combustion of raw syngas from biomass steam gasification-Coupled operation of two dual fluidized bed pilot plants[J]. Fuel, 2014,127:178-185. doi: 10.1016/j.fuel.2014.01.062

    18. [18]

      ABAD A, ADÁNEZ J, CUADRAT A, GARCÍA L F, GAYÁN P, DE DIEGO L F. Kinetics of redox reactions of ilmenite for chemical-looping combustion[J]. Chem Eng Sci, 2011,66(4):689-702. doi: 10.1016/j.ces.2010.11.010

    19. [19]

      LEION H, MATTISSON T, LYNGFELT A. Use of ores and industrial products as oxygen carriers in chemical-looping combustion[J]. Energy Fuels, 2009,23(4):2307-2315. doi: 10.1021/ef8008629

    20. [20]

      XI G, WANG C, WANG X. The oriented self-assembly of magnetic Fe3O4 nanoparticles into monodisperse microspheres and their use as substrates in the formation of Fe3O4 nanorods[J]. Eur J Inorg Chem, 2008(3):425-431.

    21. [21]

      SHEBANOVA O N, LAZOR P. Raman spectroscopic study of magnetite (Fe3O4):A new assignment for the vibrational spectrum[J]. J Solid State Chem, 2003,174(2):424-430. doi: 10.1016/S0022-4596(03)00294-9

    22. [22]

      THIBEAU R J, BROWN C W, HEIDERSBACH R H. Raman spectra of possible corrosion products of iron[J]. Appl Spectrosc, 1978,32(6):532-535. doi: 10.1366/000370278774330739

    23. [23]

      DE-FARIA D, VENÂNCIO S S, DE-OLIVEIRA M. Raman microspectroscopy of some iron oxides and oxyhydroxides[J]. J Raman Spectrosc, 1997,28(11):873-878. doi: 10.1002/(ISSN)1097-4555

    24. [24]

      LI Y S, CHURCH J S, WOODHEAD A L. Infrared and Raman spectroscopic studies on iron oxide magnetic nano-particles and their surface modifications[J]. J Magn Mater, 2012,324(8):1543-1550. doi: 10.1016/j.jmmm.2011.11.065

    25. [25]

      SHEBANOVA O N, LAZOR P. Raman study of magnetite (Fe3O4):laser-induced thermal effects and oxidation[J]. J Raman Spectrosc, 2003,34(11):845-852. doi: 10.1002/(ISSN)1097-4555

    26. [26]

      PIMENTA H P, SESHADRI V. Characterisation of structure of iron ore sinter and its behaviour during reduction at low temperatures[J]. Ironmak Steelmak, 2002,29(3):169-174. doi: 10.1179/030192302225002009

    27. [27]

      CUI X, ANTONIETTI M, YU S H. Structural effects of iron oxide nanoparticles and iron ions on the hydrothermal carbonization of starch and rice carbohydrates[J]. Small, 2006,2(6):756-759. doi: 10.1002/(ISSN)1613-6829

    28. [28]

      TAY H L, LI C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal:Comparison between gasification in O2 and CO2[J]. Fuel Process Technol, 2010,91(8):800-804. doi: 10.1016/j.fuproc.2009.10.016

  • 加载中
    1. [1]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    2. [2]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    3. [3]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    7. [7]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    8. [8]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    9. [9]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    10. [10]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    11. [11]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    12. [12]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    13. [13]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    14. [14]

      Wen Shi Zhangwen Wei Mei Pan Chengyong Su . Explorations on the Course Construction of Structural Chemistry Practice and Application Targeting the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 96-100. doi: 10.12461/PKU.DXHX202409036

    15. [15]

      Houjin Li Wenjian Lan . Name Reactions in University Organic Chemistry Laboratory. University Chemistry, 2024, 39(4): 268-279. doi: 10.3866/PKU.DXHX202310016

    16. [16]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    17. [17]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    18. [18]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    19. [19]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    20. [20]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

Metrics
  • PDF Downloads(2)
  • Abstract views(1658)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return