Citation: SONG Yin-min, FENG Wei, WANG Yun-fei, LI Na, BAN Yan-peng, TENG Ying-yue, ZHI Ke-duan, HE Run-xia, ZHOU Hua-cong, LIU Quan-sheng. Structure characteristics of unreacted residues in combustion of Shengli lignite and effect of adding Fe components[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(12): 1447-1456. shu

Structure characteristics of unreacted residues in combustion of Shengli lignite and effect of adding Fe components

  • Corresponding author: LIU Quan-sheng, liuqs@imut.edu.cn
  • Received Date: 13 July 2016
    Revised Date: 21 September 2016

Figures(8)

  • The effect of Fe on structure of unreacted residues from combustion of demineralized Shengli lignite at ignition temperature was studied. TGA was adopted to investigate the ignition temperature of demineralized and Fe adding lignite, which were combusted at ignition temperature in quartz tube reactor to attain solid unreacted residues. The structure properties of lignite and the unreacted residues were investigated by FT-IR, XPS, XRD, and Raman spectra to study influence of Fe on the combustion reaction. The results indicate that adding of Fe lowers the ignition temperature of demineralized Shengli lignite, especially when the adding amount was 3.50%. The FT-IR of solid unreacted residues demonstrates that the adding of Fe has no obvious effect on functional groups of unreacted residues, suggesting that the functional groups are not the main factors to affect he combustion performance. The Fe adding accelerates the decrease of carbon-oxygen structure of SL+ during combustion and causes the reduced aromaticity and graphitization degree of unreacted residues, and favors the increase in alkyl side chain and crystal structure defects, indicating that the Fe adding promotes the changes in carbon-oxygen structure during combustion and restrains graphitized transformation of unreacted residues.
  • 加载中
    1. [1]

      LI Y, ZHOU C L, LI N, ZHI K D, SONG Y M, HE R X, TENG Y Y, LIU Q S. Production of high H2/CO syngas by steam gasification of Shengli lignite:Catalytic effect of inherent minerals[J]. Energy Fuels, 2015,29(8):4738-4746. doi: 10.1021/acs.energyfuels.5b00168

    2. [2]

      QI Xue-jun, SONG Wen-wu, LIU Liang. Effect of iron on Shengli brown coal char structure and its influence on gasification reactivity[J]. J Fuel Chem Technol, 2015,43(5):554-559.  

    3. [3]

      HAYKIRI-AÇMA H, ERSOY-MERIÇBOYU A, KVÇVKBAYRAK S. Combustion reactivity of different rank coals[J]. Energy Convers Manage, 2002,43(4):459-465. doi: 10.1016/S0196-8904(01)00035-8

    4. [4]

      TOMITA A,OHTSUKA Y.Advances in the Science of Victorian Brown Coal-Gasification and Combustion of Brown Coal (Chapter 5)[M].Holland:Elsevier Ltd,2004.

    5. [5]

      GANGWAL S K, TRUESDALE R S. Fundamental aspects of catalysed coal char gasification[J]. Int J Energy Res, 1980,4(2):113-126. doi: 10.1002/(ISSN)1099-114X

    6. [6]

      TOMITA A. Catalysis of carbon-gas reactions[J]. Catal Surv Jpn, 2001,5(1):17-24. doi: 10.1023/A:1012205714699

    7. [7]

      WOOD B J, SANCIER K M. The mechanism of the catalytic gasification of coal char:A critical review[J]. Catal Rev, 1984,26(2):233-279. doi: 10.1080/01614948408078065

    8. [8]

      MENDEZ L B, BORREGO A G, MARTINEZ T M R, MENENDEZ R. Influence of petrographic and mineral matter composition of coal particles on their combustion reactivity[J]. Fuel, 2003,82:1875-1882. doi: 10.1016/S0016-2361(03)00190-X

    9. [9]

      MIURA K, HASHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification,and indices representing reactivity[J]. Fuel, 1989,68(11):1461-1475. doi: 10.1016/0016-2361(89)90046-X

    10. [10]

      TAKARADA T, TAMAI Y, TOMITA A. Reactivities of 34 coals under steam gasification[J]. Fuel, 1985,64(10):1438-1442. doi: 10.1016/0016-2361(85)90347-3

    11. [11]

      BEAMISH B B, SHAW K J, RODGERS K A, NEWMAN J. Thermogravimetric determination of the carbon dioxide reactivity of char from some New Zealand coals and its association with the inorganic geochemistry of the parent coal[J]. Fuel Process Technol, 1998,53:243-253. doi: 10.1016/S0378-3820(97)00073-8

    12. [12]

      HAYKIRI-AÇMA H, ERSOY-MERIÇBOYU A, KÜÇÜKBAYRAK S. Effect of mineral matter on the reactivity of lignite chars[J]. Energy Convers Manage, 2001,42:11-20. doi: 10.1016/S0196-8904(00)00040-6

    13. [13]

      HAYKIRI-AÇMA H, YAVUZ R, ERSOY-MERIÇBOYU A, KÜÇÜKBAYRAK S. Effect of mineral matter on the reactivity of lignite[J]. Thermochim Acta, 1999,342(1/2):79-84.  

    14. [14]

    15. [15]

      CHEN Hong-bo, ZHANG Yu-hong. Research on separation and enrichments of macerals of coal[J]. Coal Qualiy Technol, 2012(6):6-9.  

    16. [16]

      QUYN D M, WU H W, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal.Part IV.Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003,82(5):587-593. doi: 10.1016/S0016-2361(02)00323-X

    17. [17]

      YAN Rong, ZHOU Yan-ling, MI Su-juan, ZHENG Chu-guang. Study on the influence of minerals on the combustion characteristics[J]. Therm Power Gener, 1996(3):33-37.  

    18. [18]

      TEKELY P, NICOLE D, DELPUECH J J. Chemical structure changes in coals after low-temperature oxidation and demineralization by acid treatment as revealed by high resolusion solid state 13C NMR[J]. Fuel Process Technol, 1987,15:225-231. doi: 10.1016/0378-3820(87)90047-6

    19. [19]

      RUBIERA T, ARENILLAS A, PEVIDA C, GAICIA R, PIS J J, STEEL K M, PATRICK J W. Coal structure and reactivity changes induced by chemical demineralization[J]. Fuel Process Technol, 2002,79(3):273-279. doi: 10.1016/S0378-3820(02)00185-6

    20. [20]

      SONG Y M, FENG W, LI N, LI Y, ZHI K D, TENG Y Y, HE R X, ZHOU H C, LIU Q S. Effects of demineralization on the structure and combustion properties of shengli lignite[J]. Fuel, 2016,183:659-667. doi: 10.1016/j.fuel.2016.06.109

    21. [21]

      ZHOU Chen-liang, LIU Quan-sheng, LI Yang, ZHI Ke-duan, TENG Ying-yue, SONG Yin-min. Production of hydrogen-rich syngas bysteam gasification of Shengli lignite and catalytic effect of inherent minerals[J]. CIESC J, 2013,64(6):2092-2102.  

    22. [22]

      SONG Yin-min, LIU Quan-sheng, TENG Ying-yue, ZHI Ke-duan, ZHOU Chen-liang, HE Run-xia. Demineralization of Shengli lignite and the corresponding morphology[J]. J Chin Electron Microsc Soc, 2012,31(6):523-528.  

    23. [23]

      YANG X J, ZHANG C, TAN P, TANG T, YANG T, FANG Q Y, CHEN G. Properties of upgraded Shengli lignite and its behavior of gasfication[J]. Energy Fuels, 2014,28(1):264-274. doi: 10.1021/ef401497a

    24. [24]

      FAN Hao-jie, CAO Xin-yu, FENG Yuan-qun, YAO Qiang, QIU Yu, CHEN Ke-fa. Study of catalytic effects of metallic compounds on coal combustion[J]. J Combust Sci Technol, 1995,1(3):212-218.  

    25. [25]

      GONG Xu-zhong, GUO Zhan-cheng, WANG Zhi. Experimental study on mechanism of lowering ignition temperature of anthracite combustion catalyzed by Fe2O3[J]. CIESC J, 2009,60(7):1707-1713.

    26. [26]

      GONG Xu-zhong, GUO Zhan-cheng, WANG Zhi. Effect of K2CO3 and Fe2O3 on combustion reativity of pulverized coal by thermogravimetry analysis[J]. J Fuel Chem Technol, 2009,37(1):42-48.  

    27. [27]

      LIU Yan-hua, CHE De-fu, LI Yin-tang, HUI Shi-en, XU Tong-mo. Effect of iron compounds on coal combustion characteristics[J]. J Xian Jiaotong Univ, 2000,34(9):20-24.  

    28. [28]

      CHEN Sheng, LIU Ying-shu. Effects of ferric nitrate on combustion kinetic characteristics of lean-meager coal[J]. J China Coal Soc, 2007,32(10):1084-1087.  

    29. [29]

      YU Guang-suo, ZHU Qing-rui, XU Shen-qi, HU Wei, ZHOU Zhi-jie. Combustion characteristics of coal and coal char from coal topping process[J]. J Fuel Chem Technol, 2012,40(5):513-518.  

    30. [30]

      SHI Jin-ming, XIANG Jun, HU Song, SUN Lu-shi, SU Sheng, XU Chao-fen, XU Kai. Change of coal structure during washing process[J]. CIESC J, 2010,61:3220-3227.  

    31. [31]

      SHINN J H. From coal to sigle stage and two stages products:A reactive model of coal structure[J]. Fuel, 1984,63(9):1187-1196. doi: 10.1016/0016-2361(84)90422-8

    32. [32]

      TAO Zhu.Coal Chemistry[M].Beijing:Metallurgical Industry Press,1981.

    33. [33]

      LIANG Hu-zhen, WANG Chuan-ge, ZENG Fan-gui, LI Mei-fen, XIANG Jian-hua. Effect of demineralization on lignite structure from Yimin coalfield by FT-IR investigation[J]. J Fuel Chem Technol, 2014,42(2):129-137.  

    34. [34]

      FENG Jie, LI Wen-ying, XIE Ke-chang. Rearch on coal structure using FT-IR[J]. J China Univ Min Technol, 2002,31(5):362-366.  

    35. [35]

      DONG Qing-nian, CHEN Xue-yi, JIN Guo-qiang, GU Yong-da. Study of lignite oxidation at low temperature by FT-IR emission spectroscopy[J]. J Fuel Chem Technol, 1997,25(4):333-338.  

    36. [36]

      WANG Y G, WEI X Y, XIE R L, LIU F J, LI P, ZONG Z M. Structural characterization of typical organic species in Jincheng No.15 anthracite[J]. Energy Fuels, 2015,29:595-601.  

    37. [37]

      LI Z K, WEI X Y, YAN H L, ZONG Z M. Insight into the structural features of Zhaotong lignite using multiple techniques[J]. Fuel, 2015,153:176-182. doi: 10.1016/j.fuel.2015.02.117

    38. [38]

      GENG W H, YASUTAKA K, TSUNENORI N, HIROKAZU T, AKIRA O. Analysis of hydrothermally-treated and weathered coals by X-ray photoelectron spectroscopy (XPS)[J]. Fuel, 2009,88:644-649. doi: 10.1016/j.fuel.2008.09.025

    39. [39]

      TONG J H, HAN X X, WANG S, JIANG X M. Evaluation of structural characteristics of Huadian oil shale kerogen using cirect techniques (solid-state 13C NMR,XPS,FT-IR,and XRD)[J]. Energy Fuels, 2011,25(9):4006-4013. doi: 10.1021/ef200738p

    40. [40]

      CHANG Hai-zhou, WANG Chuan-ge, ZENG Fan-gui, LI Jun, LI Wen-ying, XIE Ke-chang. XPS comparative analysis of coal macerals with different reducibility[J]. J Fuel Chem Technol, 2006,34(4):389-394.  

    41. [41]

      ANDREDA S M, ANDRE S M, ANTONIO C F V, EDUARDO O. Study of coal,char and coke fines structures and their proportions in the off-gas blast furnace samples by X-ray diffraction[J]. Fuel, 2013,114:224-228. doi: 10.1016/j.fuel.2012.07.064

    42. [42]

      OLUWADAYO O S, TOBIAS H, STEPHEN F F. Structural characterization of Nigerian coals by X-ray diffraction,Raman and FT-IR spectroscopy[J]. Energy, 2010,35(2):5347-5353.

    43. [43]

      GUEDES A, VALENTIM B, PRIETO A C, NORONHA F. Raman spectroscopy of coal macerals and fluidized bed char morphotypes[J]. Fuel, 2012,97:443-449. doi: 10.1016/j.fuel.2012.02.054

    44. [44]

      LI X J, HAYASHI J, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolisis of a Victorian brown coal[J]. Fuel, 2006,85(12/13):1700-1707.

    45. [45]

      LI Mei-fen, ZENG Fan-gui, QI Fu-hui, SUN Bei-lei. Raman spectroscopic characteristics of different rank coals and the relation with XRD structural parameters[J]. Spectrosc Spect Anal, 2009,29(9):2446-2449.  

    46. [46]

      GONG Xu-zhong, GUO Zhan-cheng, WANG Zhi. Effects of Fe2O3 on pyrolysis reactivity of demineralized higher rank coal and its char structure[J]. CIESC J, 2009,60(9):2321-2325.

    47. [47]

      LI Yang, LIU Yang, FENG Wei, ZHAO Bin, ZHI Ke-duan, TENG Ying-yue, SONG Yin-min, HE Run-xia, ZHOU Chen-liang, LIU Quan-sheng. Influence of calcium oxide on Shengli lignite char microstructure and steam gasification performance[J]. J Fuel Chem Technol, 2015,43(9):1038-1043.  

  • 加载中
    1. [1]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    2. [2]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    3. [3]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    4. [4]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    5. [5]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    6. [6]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    7. [7]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    8. [8]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    9. [9]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    10. [10]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    11. [11]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    12. [12]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    13. [13]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    14. [14]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    15. [15]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    16. [16]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    17. [17]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    18. [18]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    19. [19]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    20. [20]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

Metrics
  • PDF Downloads(1)
  • Abstract views(972)
  • HTML views(84)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return