Citation: DUAN Ting-ming, XIAO Yong, ZHANG Guo-quan, JIA Li-tao, HOU Bo, LI De-bao. Effect of calcination temperature on the properties of the mixed TiO2-ZrO2 oxides and their performance in the dehydration of octadecanol to octadecene[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 626-631. shu

Effect of calcination temperature on the properties of the mixed TiO2-ZrO2 oxides and their performance in the dehydration of octadecanol to octadecene

  • Corresponding author: XIAO Yong, xiaoyong@sxice.ac.cn
  • Received Date: 17 January 2020
    Revised Date: 19 March 2020

Figures(5)

  • A series of mixed TiO2-ZrO2 oxide catalysts used for the dehydration of octadecanol to octadecene were prepared by doping TiO2 in ZrO2 and calcining at 350-500 ℃. With the increase of calcination temperature, the amount of Lewis acid sites on the catalyst surface gradually increases. The amount of Lewis acid sites on the catalyst calcined at 450 ℃ is the most, and when the calcination temperature is over 450 ℃, the amount of Lewis acid sites decreases. No Brønsted acid sites are found on the catalysts. The mixed TiO2-ZrO2 oxides calcined at temperature below 400 ℃ contain Ti-O-Zr bonds and amorphous structure. The mixed TiO2-ZrO2 oxides with calcination temperature above 400 ℃ show monoclinic and tetragonal phases of ZrO2. The crystalline phase of the metal oxides and amount of the acid sites simultaneously affect the performance of the catalysts. The acid sites on the mixed TiO2-ZrO2 oxides with amorphous structure have much higher dehydration activity than those with monoclinic and tetragonal zirconia crystalline phases. The catalyst calcined at 400 ℃ has the highest yield of 1-octadecene.
  • 加载中
    1. [1]

      ECHAROJ S, SANTIKUNAPORN M, CHAVADEJ S. Transformation of bioderived 1-decanol to diesel-like fuel and biobased oil via dehydration and oligomerization reactions[J]. Energy Fuels, 2017,31(9):9465-9476. doi: 10.1021/acs.energyfuels.7b01247

    2. [2]

      LI Ying-hui, ZENG Qun-ying, WAN Shu-bao, CHI Ke-bin, DU Hai. Synthesis process and market of α-olefin[J]. Adv Fine Petrochem, 2004,5(11):12-16. doi: 10.3969/j.issn.1009-8348.2004.11.004

    3. [3]

      LI Ying-hui, ZENG Qun-ying, XIAO Hai-cheng, WAN Shu-bao, CHI Ke-bin. Progress in alpha olefin synhesis processes[J]. Nat Gas Chem Ind, 2005,30(2):55-58. doi: 10.3969/j.issn.1001-9219.2005.02.013

    4. [4]

      ZHAO Hui-ping. Octene-1 manufacturing process[J]. Petrochem Ind Technol, 2006(1):59-64. doi: 10.3969/j.issn.1006-0235.2006.01.017

    5. [5]

      ZHENG Lai-chang, WANG Ru-wen, YANG Xiao-hui, YANG Ke. Technical progress of α-olefin production from vegetabe oil[J]. Lubr Oil, 2015,30(4):1-4. doi: 10.3969/j.issn.1002-3119.2015.04.001

    6. [6]

      SONG W, LIU Y, BARATH E, WANG L L, ZHAO C, MEI D, LERCHER J A. Dehydration of 1-octadecanol over H-BEA:A combined experimental and computational study[J]. ACS Catal, 2016,6(2):878-889. doi: 10.1021/acscatal.5b01217

    7. [7]

      CHOKKARAM S, DAVIS B H. Dehydration of 2-octanol over zirconia catalysts:Influence of crystal structure, sulfate addition and pretreatment[J]. J Mol Catal A:Chem, 1997,118(1):89-99. doi: 10.1016/S1381-1169(96)00380-9

    8. [8]

      KOSTESTKYY P, YU J, GORTE R J, MPOURMPAKIS G. Structure-activity relationships on metal-oxides:Alcohol dehydration[J]. Catal Sci Technol, 2014,4:3861-3869. doi: 10.1039/C4CY00632A

    9. [9]

      SATO S, TAKAHASHI R, SODESAWA T, YAMAMOTO N. Dehydration of 1, 4-butanediol into 3-buten-1-ol catalyzed by ceria[J]. Catal Commun, 2004,5(8):397-400. doi: 10.1016/j.catcom.2004.05.006

    10. [10]

      CHEN B H, LU J Z, WU L P, CHAO Z S. Dehydration of bio-ethanol to ethylene over iron exchanged HZSM-5[J]. Chin J Catal, 2016,37(11):1941-1948. doi: 10.1016/S1872-2067(16)62524-X

    11. [11]

      TAKAHASHI N, SUDA A, HACHISUKA I, SUGIURA M, SOBUKAWA H, SHINJOH H. Sulfur durability of NOx storage and reduction catalyst with supports of TiO2, ZrO2 and ZrO2-TiO2 mixed oxides[J]. Appl Catal B:Environ, 2007,72(1/2):187-195.  

    12. [12]

      MAITY S, RANA M, BEJ S, ANCHEYTA-JUAREZ J, DHAR G M, RAO T P. TiO2-ZrO2 mixed oxide as a support for hydrotreating catalyst[J]. Catal lett, 2001,72:115-119.  

    13. [13]

      LI K T, WANG I, WU J C. Surface and catalytic properties of TiO2-ZrO2 mixed oxides[J]. Catal Surv Asia, 2012,16(4):240-248. doi: 10.1007/s10563-012-9147-y

    14. [14]

      MANRIQUEZ M, LOPEZ T, GOMEZ R, NAVARRETE J. Preparation of TiO2-ZrO2 mixed oxides with controlled acid-basic properties[J]. J Mol Catal A:Chem, 2004,220(2):229-237. doi: 10.1016/j.molcata.2004.06.003

    15. [15]

      AN M, LI L, CAO Y, MA F, LIU D, GU F. Coral reef-like Pt/TiO2-ZrO2 porous composites for enhanced photocatalytic hydrogen production performance[J]. Mol Catal, 2019,475110482. doi: 10.1016/j.mcat.2019.110482

    16. [16]

      FAN M, SI Z, SUN W, ZHANG P. Sulfonated ZrO2-TiO2 nanorods as efficient solid acid catalysts for heterogeneous esterification of palmitic acid[J]. Fuel, 2019,252:254-261. doi: 10.1016/j.fuel.2019.04.121

    17. [17]

      LIANG Xiao-feng, YANG Shi-yuan, WANG Jun-xia. X-ray and raman studies of ZrO2 particles synthesized by alcohol-thermal method[J]. J Synth Cryst, 2008,37(4):1037-1041. doi: 10.3969/j.issn.1000-985X.2008.04.054

    18. [18]

      POWERS D, GRAY H B. Characterization of the thermal dehydration of zirconium oxide halide octahydrates[J]. Inorg Chem, 1973,12(11):2721-2726. doi: 10.1021/ic50129a045

    19. [19]

      KILO M, SCHILD C, WOKAUN A, BAIKER A. Surface oxidic phases of binary and ternary zirconia-supported metal catalysts investigated by raman spectroscopy[J]. J Chem Soc, Faraday Trans, 1992,88:1453-1457. doi: 10.1039/ft9928801453

    20. [20]

      MICIUKIEWICZ J, MANG T, KNOZINGER H. Raman spectroscopy characterization of molybdena supported on titania-zirconia mixed oxide[J]. Appl Catal A:Gen, 1995,122(2):151-159. doi: 10.1016/0926-860X(94)00236-3

    21. [21]

      SUN Chuan-zhi. Synthesis and Characterization of Titanium Oxide Based Catalysts and Their Application in the Environmental Catalysis[M]. Nanjing:Nanjing University, 2011.

    22. [22]

      REDDY B M, CHOWDHURY B, SMIRNIOTIS P G. An XPS study of the dispersion of MoO3 on TiO2-ZrO2, TiO2-SiO2, TiO2-Al2O3, SiO2-ZrO2, and SiO2-TiO2-ZrO2 mixed oxides[J]. Appl Catal A:Gen, 2001,211(1):19-30. doi: 10.1016/S0926-860X(00)00834-6

    23. [23]

      MULLINS W, AVERBACH B. Bias-reference X-Ray photoelectron spectroscopy of sapphire and yttrium aluminum garnet crystals[J]. Surf Sci, 1988,206(1/2):29-40.  

    24. [24]

      STEPHENSON D, BINKOWSKI N. X-ray photoelectron spectroscopy of silica in theory and experiment[J]. J Non-Cryst Solids, 1976,22(2):399-421. doi: 10.1016/0022-3093(76)90069-7

    25. [25]

      BARTHOS R, LONYI F, ENGELHARDT J, VALYON J. A study of the acidic and catalytic properties of pure and sulfated zirconia-titania and zirconia-silica mixed oxides[J]. Top Catal, 2000,10:79-87. doi: 10.1023/A:1019112017065

    26. [26]

      GOTT T, OYAMA S T. A general method for determining the role of spectroscopically observed species in reaction mechanisms:Analysis of coverage transients(ACT)[J]. J Catal, 2009,263(2):359-371. doi: 10.1016/j.jcat.2009.02.028

    27. [27]

      HONG E, BAEK S W, SHIN M, SUH Y W, SHIN C H. Effect of aging temperature during refluxing on the textural and surface acidic properties of zirconia catalysts[J]. J Ind Eng Chem, 2017,54:137-145. doi: 10.1016/j.jiec.2017.05.026

    28. [28]

      EMEIS C. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993,141:347-354. doi: 10.1006/jcat.1993.1145

    29. [29]

      TANABE K, SUMIYOSHI T, SHIBATA K, KIYOURA T, KITAGAWA J. A new hypothesis regarding the surface acidity of binary metal oxides[J]. Bull Chem Soc Jpn, 1974,47:1064-1066. doi: 10.1246/bcsj.47.1064

    30. [30]

      DAS D, MISHRA H K, PARIDA K M. Preparation, physico-chemical characterization and catalytic activity of sulphated ZrO2-TiO2 mixed oxides[J]. J Mol Catal A:Chem, 2002,189:271-282. doi: 10.1016/S1381-1169(02)00363-1

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Hongling Yuan Jialin Xie Jiawei Wang Jixiang Zhao Jiayan Liu Qing Feng Wei Qi Min Liu . Cyclic Olefin Copolymer (COC): The Agile Vanguard in the Realm of Materials. University Chemistry, 2024, 39(7): 294-298. doi: 10.12461/PKU.DXHX202311041

    3. [3]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    4. [4]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    5. [5]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Xunzhang Fan Yuanjin Zhao Shufang Luo Aihua He . Karl Ziegler: A Pioneer in the Polyolefin Industry – Commemorating the 50th Anniversary of the German Chemist’s Passing. University Chemistry, 2024, 39(8): 389-394. doi: 10.3866/PKU.DXHX202312065

    8. [8]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    9. [9]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    11. [11]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    12. [12]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    13. [13]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    14. [14]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    15. [15]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    16. [16]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    17. [17]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    18. [18]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    19. [19]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    20. [20]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

Metrics
  • PDF Downloads(7)
  • Abstract views(673)
  • HTML views(129)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return