Citation: Zhao Peipei, Zheng Wenhui, Bu Min, He Wanlin, Cai Yan. Progress in Development of Coronavirus Inhibitors[J]. Chemistry, ;2020, 83(8): 674-689. shu

Progress in Development of Coronavirus Inhibitors

Figures(26)

  • Coronaviruses are a kind of widely exist pathogens that could cause serious health hazard to human and multiple species of animals, among them, Severe Acute Respiratory Syndrome virus (SARS-CoV)and Middle East respiratory syndrome (MERS-CoV)were broken out in 2003 and 2012 respectively, both of them cause serious health risk to human and considerable loss to global economy. Especially, the Novel Coronavirus(SARS-CoV-2)which was broken out at the end of 2019 has caused millions of infections and tens of thousands death. It is obviously that coronaviruses are highly contagious infectious virus with high mortality rate, which seriously threaten people's health and safety. However, there is no effective drug approved for treatment of them and no vaccine for protect people at present. In this review, we introduced the drugs-like target in coronaviruses and the design and synthesis of representative inhibitors of them, hoping to provide some references for the development of effective therapeutic drugs.
  • 加载中
    1. [1]

      Hamre D, Procknow J J. Proc. Soc. Exp. Biol. Med., 1966, 121(1): 190~193. 

    2. [2]

      Stadler K, Masignani V, Eickmann M, et al. Nat. Rev. Microbiol., 2003, 1: 209~218. 

    3. [3]

      de Groot R J, Baker S C, Baric R, et al. Family Coronaviridae//Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, Oxford: 806~828.

    4. [4]

      Graham R L, Donaldson E F, Baric R S. Nat. Rev. Microbiol., 2013, 11: 836~848. 

    5. [5]

      Yang H, Yang M, Ding Y, et al. PNAS, 2003, 100: 13190~13195. 

    6. [6]

      Dragovich P S, Prins T J, Zhou R, et al. J. Med. Chem., 1999, 42: 1213~1224. 

    7. [7]

      Shie J J, Fang J M, Kuo T H, et al. Bioorg. Med. Chem., 2005, 13: 5240~5252. 

    8. [8]

      Matthews D A, Patick A K, Baker R O, et al. Learning from SARS: Preparing for the Next Disease outbreak: Workshop Summary. The National Academies Press: Washington, DC, 2004, 4: 186~193.

    9. [9]

      Yang H T, Xie W Q, Xue X Y et al. PLoS Biology, 2005, 3(10): 1742~1752.

    10. [10]

      Wang F H, Chen C, Yang H T. J. Med. Chem., 2017, 60: 3212~3216. 

    11. [11]

      Jain R P, Pettersson H I, Zhang J, et al. J. Med. Chem., 2004, 47: 6113~6116. 

    12. [12]

      Zhang L L, Lin D Z, Kusov Y, et al. J. Med. Chem., 2020 DOI: 10.1021/acs.jmedchem.9b01828?ref=pdf.

    13. [13]

      Shie J J, Fang J M, Kuo C J, et al. J. Med. Chem., 2005, 48: 4469~4473. 

    14. [14]

      Goetz D H, Choe Y, Hansell E, et al. Biochemistry, 2007, 46: 8744~8752. 

    15. [15]

      Lee T W, Cherney M M, Liu J. J. Mol. Biol., 2007, 366: 916~932. 

    16. [16]

      (a) Thompson R C. Biochemistry, 1973, 12(1): 47~51; (b) Kennedy W P, Schultz R M. Biochemistry, 197918(2): 349~356; (c) Thompson R C, Bauer C A. Biochemistry, 1979, 18(8): 1552~1558. 

    17. [17]

      Damodaran A, Harris R B. J. Protein Chem., 1995, 14: 431~440. 

    18. [18]

      Al-Gharabli S I, Shah S T, Weik S et al. J. Chem. Bio. Chem., 2006, 7: 1048~1055. 

    19. [19]

      Yang S, Chen S J, Hsu M F. J. Med. Chem., 2006, 49: 4971~4980. 

    20. [20]

      (a) Akaji K, Konno H, Mitsui H. J. Med. Chem., 2011, 54: 7962~7973; (b) Dai W, Zhang B, Jiang X, et al. Science, 2020, [DOI:10. 1126 / science. abb4489]

    21. [21]

      Zhang H Z, Zhang H, Kemnitzer W, et al. J. Med. Chem., 2006, 49: 1198~1201. 

    22. [22]

      Sydnes M O, Hayashi Y, Sharma V K. Tetrahedron, 2006, 62: 8601~8609. 

    23. [23]

      Shao Y M, Yang W B, Kuo T H. Bioorg. Med. Chem., 2008, 16: 4652~4660. 

    24. [24]

      Kaeppler U, Stiefl N, Schiller M. J. Med. Chem., 2005, 48: 6832~6842. 

    25. [25]

      Blanchard J E, Elowe N H, Huitema C. Chem. Biol., 2004, 11: 1445~1453. 

    26. [26]

      Wu C Y, King K Y, Kuo C J. Chem. Biol., 2006, 13: 261~268. 

    27. [27]

      Ghosh A K, Gong G, Grum-Tokars V. Bioorg. Med. Chem. Lett., 2008, 18: 5684~5688. 

    28. [28]

      Zhang J, Huitema C, Niu C. Bioorg. Chem., 2008, 36: 229~240. 

    29. [29]

      Turlington M, Chun A, Tomar S et al. Bioorg. Med. Chem. Lett., 2013, 23: 6172~6177. 

    30. [30]

      Chen L R, Wang Y C, Lin Y W, et al. Bioorg. Med. Chem. Lett., 2005, 15: 3058~3062. 

    31. [31]

      Wen C C, Kuo Y H, Jan J T, et al. J. Med. Chem., 2007, 50: 4087~4095. 

    32. [32]

      Ryu Y B, Park S J, Kim Y M, et al. Bioorg. Med. Chem., 2010, 18: 7940~7947. 

    33. [33]

      (a) Lindner H A, Fotouhi-Ardakani N, Lytvyn V, et al. J. Virol., 2005, 79: 15199~15208; (b) Devaraj S G, Wang N, Chen Z, et al. J. Biol. Chem., 2007, 282: 32208~32221. 

    34. [34]

      Ghosh A K, Takayama J, Aubin Y, et al. J. Med. Chem., 2009, 52: 5228~5240. 

    35. [35]

      Ghosh A K, Takayama J, Rao K V, et al. J. Med. Chem., 2010, 53: 4968~4979. 

    36. [36]

      Lin M H, Moses D C, Hsieh C H, et al. Antiviral Res., 2018, 150: 155~163. 

    37. [37]

      Park J Y, Jeong H J, Kim J H, et al. Biol. Pharm. Bull., 2012, 35(11): 2036~2042. 

    38. [38]

      Park J Y, Kim J H, Kim Y M, et al. Bioorg. Med. Chem., 2012, 20(19): 5928~5935. 

    39. [39]

      Song Y H, Kim D W, Curtis-Long M J, et al. Biol. Pharm. Bull., 2014, 37(6): 1021~1028. 

    40. [40]

      Park J Y, Ko J A, Kim D W, et al. J. Enzyme Inhib. Med. Chem., 2016, 31(1): 23~30. 

    41. [41]

      Park J Y, Yuk H J, Ryu H W, et al. J. Enzyme Inhib. Med. Chem., 2017, 32(1): 504~515. 

    42. [42]

      Azzi A, Lin S X. Proteins, 2004, 57(1): 12~14 

    43. [43]

      Wit E, Feldmann F, Cronin J, et al. PNAS, 2020, 117(12): 6771~6776. 

    44. [44]

      Sheahan T P, Sims A C, Graham R L, et al. Sci. Transl. Med., 2017, 9(396): 3653 

    45. [45]

      Wang M, Cao R, Zhang L, et al. Cell Res., 2020, 30(3): 269~271. 

    46. [46]

      Vieira T, Stevens A, Chtchemelinine A, et al. Org. Proc. Res. Dev., 2020, DOI: 10.1021/acs.oprd.0c00172.

    47. [47]

      Warren T K, Wells J, Panchal R G, et al. Nature, 2014, 508(7496): 402~405. 

    48. [48]

      Wang M L, Cao R Y, Zhang L K, et al. Cell Res., 2020. DOI.10.1038/s41422~020~0282~0.

    49. [49]

      https: //tech.sina.com.cn/roll/2020~02~18/doc-iimxyqvz3689337.shtml.

    50. [50]

      Furuta Y, Takahashi K, Fukuda Y, et al. Antimicrob. Agents Chemother., 2002, 46(4): 977~981. 

    51. [51]

      Egawa H, Furuta Y, Sugita J, et al. USP: 2003130213A1. 2003

    52. [52]

      (a) Zheng J Q, Zhang T, et al. CN: 102775358A, 2012; (b) Zhang T, Kong L J, et al. Chin. J. Pharm., 2013, 44(9): 841~843; (c) Wang H, Li X Z, Zhong W. Chin. J. Pharm., 2014, 45(11): 1009~1012; (d) Wang W, Liu M, Xiao X R, et al. J. Int. Pharm. Res., 2015, 42(2): 220~224; (e) Wang K, Sun X Y, Yao S, et al. CN: 106478528A, 2017.

    53. [53]

      (a) Hoffmann M, Kleine-Weber H, Schroeder S, et al. Cell, 2020, 181: 271~280; (b) Zhou P, Yang X L, Wang X G, et al. Nature, 2020, 579: 270~273. 

  • 加载中
    1. [1]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    2. [2]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    3. [3]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    4. [4]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    5. [5]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    6. [6]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    7. [7]

      Ping LIGeng TANXin HUANGFuxing SUNJiangtao JIAGuangshan ZHUJia LIUJiyang LI . Green synthesis of metal-organic frameworks with open metal sites for efficient ammonia capture. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 2063-2068. doi: 10.11862/CJIC.20250020

    8. [8]

      Zhijun Huang Jiawei Li Mojin Lu Fa Zhou Limiao Chen Jianhan Huang Younian Liu . Spying Operation of the Rabies Virus. University Chemistry, 2024, 39(9): 164-169. doi: 10.12461/PKU.DXHX202403026

    9. [9]

      Xiaorui ChenXuan LuoTongming SuXinling XieLiuyun ChenYuejing BinZuzeng QinHongbing Ji . Ga-doped Cu/γ-Al2O3 bifunctional interface sites promote the direct hydrogenation of CO2 to DME. Acta Physico-Chimica Sinica, 2025, 41(10): 100126-0. doi: 10.1016/j.actphy.2025.100126

    10. [10]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    11. [11]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    12. [12]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    13. [13]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    14. [14]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    15. [15]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    16. [16]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    17. [17]

      Shunü Peng Huamin Li Zhaobin Chen Yiru Wang . Simultaneous Application of Multiple Quantitative Analysis Methods in Gas Chromatography for the Determination of Active Ingredients in Traditional Chinese Medicine Preparations. University Chemistry, 2025, 40(10): 243-249. doi: 10.12461/PKU.DXHX202412043

    18. [18]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    19. [19]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    20. [20]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

Metrics
  • PDF Downloads(28)
  • Abstract views(1153)
  • HTML views(355)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return