Citation: Zhao Peipei, Zheng Wenhui, Bu Min, He Wanlin, Cai Yan. Progress in Development of Coronavirus Inhibitors[J]. Chemistry, ;2020, 83(8): 674-689. shu

Progress in Development of Coronavirus Inhibitors

Figures(26)

  • Coronaviruses are a kind of widely exist pathogens that could cause serious health hazard to human and multiple species of animals, among them, Severe Acute Respiratory Syndrome virus (SARS-CoV)and Middle East respiratory syndrome (MERS-CoV)were broken out in 2003 and 2012 respectively, both of them cause serious health risk to human and considerable loss to global economy. Especially, the Novel Coronavirus(SARS-CoV-2)which was broken out at the end of 2019 has caused millions of infections and tens of thousands death. It is obviously that coronaviruses are highly contagious infectious virus with high mortality rate, which seriously threaten people's health and safety. However, there is no effective drug approved for treatment of them and no vaccine for protect people at present. In this review, we introduced the drugs-like target in coronaviruses and the design and synthesis of representative inhibitors of them, hoping to provide some references for the development of effective therapeutic drugs.
  • 加载中
    1. [1]

      Hamre D, Procknow J J. Proc. Soc. Exp. Biol. Med., 1966, 121(1): 190~193. 

    2. [2]

      Stadler K, Masignani V, Eickmann M, et al. Nat. Rev. Microbiol., 2003, 1: 209~218. 

    3. [3]

      de Groot R J, Baker S C, Baric R, et al. Family Coronaviridae//Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier, Oxford: 806~828.

    4. [4]

      Graham R L, Donaldson E F, Baric R S. Nat. Rev. Microbiol., 2013, 11: 836~848. 

    5. [5]

      Yang H, Yang M, Ding Y, et al. PNAS, 2003, 100: 13190~13195. 

    6. [6]

      Dragovich P S, Prins T J, Zhou R, et al. J. Med. Chem., 1999, 42: 1213~1224. 

    7. [7]

      Shie J J, Fang J M, Kuo T H, et al. Bioorg. Med. Chem., 2005, 13: 5240~5252. 

    8. [8]

      Matthews D A, Patick A K, Baker R O, et al. Learning from SARS: Preparing for the Next Disease outbreak: Workshop Summary. The National Academies Press: Washington, DC, 2004, 4: 186~193.

    9. [9]

      Yang H T, Xie W Q, Xue X Y et al. PLoS Biology, 2005, 3(10): 1742~1752.

    10. [10]

      Wang F H, Chen C, Yang H T. J. Med. Chem., 2017, 60: 3212~3216. 

    11. [11]

      Jain R P, Pettersson H I, Zhang J, et al. J. Med. Chem., 2004, 47: 6113~6116. 

    12. [12]

      Zhang L L, Lin D Z, Kusov Y, et al. J. Med. Chem., 2020 DOI: 10.1021/acs.jmedchem.9b01828?ref=pdf.

    13. [13]

      Shie J J, Fang J M, Kuo C J, et al. J. Med. Chem., 2005, 48: 4469~4473. 

    14. [14]

      Goetz D H, Choe Y, Hansell E, et al. Biochemistry, 2007, 46: 8744~8752. 

    15. [15]

      Lee T W, Cherney M M, Liu J. J. Mol. Biol., 2007, 366: 916~932. 

    16. [16]

      (a) Thompson R C. Biochemistry, 1973, 12(1): 47~51; (b) Kennedy W P, Schultz R M. Biochemistry, 197918(2): 349~356; (c) Thompson R C, Bauer C A. Biochemistry, 1979, 18(8): 1552~1558. 

    17. [17]

      Damodaran A, Harris R B. J. Protein Chem., 1995, 14: 431~440. 

    18. [18]

      Al-Gharabli S I, Shah S T, Weik S et al. J. Chem. Bio. Chem., 2006, 7: 1048~1055. 

    19. [19]

      Yang S, Chen S J, Hsu M F. J. Med. Chem., 2006, 49: 4971~4980. 

    20. [20]

      (a) Akaji K, Konno H, Mitsui H. J. Med. Chem., 2011, 54: 7962~7973; (b) Dai W, Zhang B, Jiang X, et al. Science, 2020, [DOI:10. 1126 / science. abb4489]

    21. [21]

      Zhang H Z, Zhang H, Kemnitzer W, et al. J. Med. Chem., 2006, 49: 1198~1201. 

    22. [22]

      Sydnes M O, Hayashi Y, Sharma V K. Tetrahedron, 2006, 62: 8601~8609. 

    23. [23]

      Shao Y M, Yang W B, Kuo T H. Bioorg. Med. Chem., 2008, 16: 4652~4660. 

    24. [24]

      Kaeppler U, Stiefl N, Schiller M. J. Med. Chem., 2005, 48: 6832~6842. 

    25. [25]

      Blanchard J E, Elowe N H, Huitema C. Chem. Biol., 2004, 11: 1445~1453. 

    26. [26]

      Wu C Y, King K Y, Kuo C J. Chem. Biol., 2006, 13: 261~268. 

    27. [27]

      Ghosh A K, Gong G, Grum-Tokars V. Bioorg. Med. Chem. Lett., 2008, 18: 5684~5688. 

    28. [28]

      Zhang J, Huitema C, Niu C. Bioorg. Chem., 2008, 36: 229~240. 

    29. [29]

      Turlington M, Chun A, Tomar S et al. Bioorg. Med. Chem. Lett., 2013, 23: 6172~6177. 

    30. [30]

      Chen L R, Wang Y C, Lin Y W, et al. Bioorg. Med. Chem. Lett., 2005, 15: 3058~3062. 

    31. [31]

      Wen C C, Kuo Y H, Jan J T, et al. J. Med. Chem., 2007, 50: 4087~4095. 

    32. [32]

      Ryu Y B, Park S J, Kim Y M, et al. Bioorg. Med. Chem., 2010, 18: 7940~7947. 

    33. [33]

      (a) Lindner H A, Fotouhi-Ardakani N, Lytvyn V, et al. J. Virol., 2005, 79: 15199~15208; (b) Devaraj S G, Wang N, Chen Z, et al. J. Biol. Chem., 2007, 282: 32208~32221. 

    34. [34]

      Ghosh A K, Takayama J, Aubin Y, et al. J. Med. Chem., 2009, 52: 5228~5240. 

    35. [35]

      Ghosh A K, Takayama J, Rao K V, et al. J. Med. Chem., 2010, 53: 4968~4979. 

    36. [36]

      Lin M H, Moses D C, Hsieh C H, et al. Antiviral Res., 2018, 150: 155~163. 

    37. [37]

      Park J Y, Jeong H J, Kim J H, et al. Biol. Pharm. Bull., 2012, 35(11): 2036~2042. 

    38. [38]

      Park J Y, Kim J H, Kim Y M, et al. Bioorg. Med. Chem., 2012, 20(19): 5928~5935. 

    39. [39]

      Song Y H, Kim D W, Curtis-Long M J, et al. Biol. Pharm. Bull., 2014, 37(6): 1021~1028. 

    40. [40]

      Park J Y, Ko J A, Kim D W, et al. J. Enzyme Inhib. Med. Chem., 2016, 31(1): 23~30. 

    41. [41]

      Park J Y, Yuk H J, Ryu H W, et al. J. Enzyme Inhib. Med. Chem., 2017, 32(1): 504~515. 

    42. [42]

      Azzi A, Lin S X. Proteins, 2004, 57(1): 12~14 

    43. [43]

      Wit E, Feldmann F, Cronin J, et al. PNAS, 2020, 117(12): 6771~6776. 

    44. [44]

      Sheahan T P, Sims A C, Graham R L, et al. Sci. Transl. Med., 2017, 9(396): 3653 

    45. [45]

      Wang M, Cao R, Zhang L, et al. Cell Res., 2020, 30(3): 269~271. 

    46. [46]

      Vieira T, Stevens A, Chtchemelinine A, et al. Org. Proc. Res. Dev., 2020, DOI: 10.1021/acs.oprd.0c00172.

    47. [47]

      Warren T K, Wells J, Panchal R G, et al. Nature, 2014, 508(7496): 402~405. 

    48. [48]

      Wang M L, Cao R Y, Zhang L K, et al. Cell Res., 2020. DOI.10.1038/s41422~020~0282~0.

    49. [49]

      https: //tech.sina.com.cn/roll/2020~02~18/doc-iimxyqvz3689337.shtml.

    50. [50]

      Furuta Y, Takahashi K, Fukuda Y, et al. Antimicrob. Agents Chemother., 2002, 46(4): 977~981. 

    51. [51]

      Egawa H, Furuta Y, Sugita J, et al. USP: 2003130213A1. 2003

    52. [52]

      (a) Zheng J Q, Zhang T, et al. CN: 102775358A, 2012; (b) Zhang T, Kong L J, et al. Chin. J. Pharm., 2013, 44(9): 841~843; (c) Wang H, Li X Z, Zhong W. Chin. J. Pharm., 2014, 45(11): 1009~1012; (d) Wang W, Liu M, Xiao X R, et al. J. Int. Pharm. Res., 2015, 42(2): 220~224; (e) Wang K, Sun X Y, Yao S, et al. CN: 106478528A, 2017.

    53. [53]

      (a) Hoffmann M, Kleine-Weber H, Schroeder S, et al. Cell, 2020, 181: 271~280; (b) Zhou P, Yang X L, Wang X G, et al. Nature, 2020, 579: 270~273. 

  • 加载中
    1. [1]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    2. [2]

      Zheqi Wang Yawen Lin Shunliu Deng Huijun Zhang Jinmei Zhou . Antiviral Strategies: A Brief Review of the Development History of Small Molecule Antiviral Drugs. University Chemistry, 2024, 39(9): 85-93. doi: 10.12461/PKU.DXHX202403108

    3. [3]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    4. [4]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    5. [5]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    6. [6]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    7. [7]

      Zhijun Huang Jiawei Li Mojin Lu Fa Zhou Limiao Chen Jianhan Huang Younian Liu . Spying Operation of the Rabies Virus. University Chemistry, 2024, 39(9): 164-169. doi: 10.12461/PKU.DXHX202403026

    8. [8]

      Di Yang Jiayi Wei Hong Zhai Xin Wang Taiming Sun Haole Song Haiyan Wang . Rapid Detection of SARS-CoV-2 Using an Innovative “Magic Strip”. University Chemistry, 2024, 39(4): 373-381. doi: 10.3866/PKU.DXHX202312023

    9. [9]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    10. [10]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    11. [11]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    12. [12]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    13. [13]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    14. [14]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    15. [15]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    16. [16]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    17. [17]

      Peihong Fan Hongxiang Lou . 研究生高等天然药物化学课程的教学改革探索——导学互促式混合课堂教学与自主学习能力培养. University Chemistry, 2025, 40(6): 16-21. doi: 10.12461/PKU.DXHX202407078

    18. [18]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    19. [19]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    20. [20]

      Weina Wang Fengyi Liu Wenliang Wang . “Extracting Commonality, Delving into Typicals, Deriving Individuality”: Constructing a Knowledge Graph of Crystal Structures. University Chemistry, 2024, 39(3): 36-42. doi: 10.3866/PKU.DXHX202308029

Metrics
  • PDF Downloads(28)
  • Abstract views(991)
  • HTML views(339)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return