Citation: Xie Yanyan, Chai Yun, Zhang Puyu. Study on Dissolving Cellulose by Ionic Liquids[J]. Chemistry, ;2020, 83(12): 1104-1112. shu

Study on Dissolving Cellulose by Ionic Liquids

Figures(6)

  • Cellulose is a type of biodegradable natural polymer material, however, it is difficult to be dissolved in water and common organic solvents due to the strong inter- and intra-molecular hydrogen bonds. The traditional solvents have disadvantages such as poor stability, toxicity, and difficulty in recycling. Therefore, searching for a new green solvent has become a hot but difficult point in the development of cellulose. Ionic liquid is a new and efficient green solvent, which can dissolve cellulose, keratin and other biological macromolecules under certain conditions. The emergence of ionic liquids provides an environmentally friendly and biodegradable solvent system for the dissolution of cellulose, which has a broad application prospect. This review summarized the solubility of cellulose dissolved by different kinds of ionic liquid and several factors affecting the solubility, the mechanism of action between ionic liquid and cellulose and the recovery method of ionic liquids, which provides theoretical basis and industrial guidance for the processing and utilization of cellulose.
  • 加载中
    1. [1]

      Wang H, Gurau G, Rogers R D. Chem. Soc. Rev., 2012, 41(4): 1519~1537. 

    2. [2]

      Pinkert A, Marsh K N, Pang S S, et al. Chem. Rev., 2009, 109(12): 6712~6728. 

    3. [3]

       

    4. [4]

       

    5. [5]

      Cao Y, Zhang R, Cheng T, et al. Appl. Microbiol. Biot., 2016, 101(2): 521~532.

    6. [6]

    7. [7]

      Fink P W, Hans J Pur, Johannes G. Prog. Polym. Sci., 2001, 26(9): 1473~1524. 

    8. [8]

       

    9. [9]

       

    10. [10]

      Cai J, Zhang L N. Biomacromolecules, 2006, 7(1): 183~189. 

    11. [11]

      Wang Y, Liu L, Chen P, et al. Phys. Chem. Chem. Phys., 2018, 20(20): 14223~14233. 

    12. [12]

      Graenacher C. USP: 1943176, 1934.

    13. [13]

      Zhu S, Wu Y, Chen Q, et al. Green Chem., 2006, 8: 325~327. 

    14. [14]

      Swatloski R P, Spear S K, Holbrey J D, et al. J. Am. Chem. Soc., 2002, 124(18): 4974~4975. 

    15. [15]

       

    16. [16]

       

    17. [17]

      Hauru L K J, Hummel M, Koschella A, et al. Cellulose, 2014, 21(6): 4417~4481.

    18. [18]

       

    19. [19]

      Zhao D S, Li H, Zhang J, et al. Carbohydr. Polym., 2012, 87(2): 1490~1494. 

    20. [20]

      Hokayem A K, Hage E R, Svecova L, et al. Molecules, 2020, 25(7): 1629~1647. 

    21. [21]

      Nguyen N A, Kim K, Bowland C C, et al. Green Chem., 2019, 21(16): 4354~4367. 

    22. [22]

      Isik M, Sardon H, Mecerreyes D. Int. J. Mol. Sci., 2014, 15(7): 11922~11940. 

    23. [23]

      Olivierbourbigou H, Magna L, Morvan D. Appl. Catal. A-Gen., 2010, 373(1): 1~56. 

    24. [24]

      Lethesh K C, Evjen S, Venkatraman V, et al. Carbohydr. Polym., 2020, 229: 115594 

    25. [25]

      Grossereid I, Lethesh K C, Venkatraman V, et al. J. Mol. Liq., 2019, 292: 111353. 

    26. [26]

      Sixta H, Michud A, Hauru L K J, et al. Nord. Pulp. Pap. Res. J., 2015, 30(1): 43~57. 

    27. [27]

      Raut D G, Sundman O, Su W, et al. Carbohydr. Polym., 2015, 130: 18~25. 

    28. [28]

      King A W T, Asikkala J, Mutikainen I, et al. Angew. Chem. Int. Ed., 2011, 50(28): 6301~6305. 

    29. [29]

       

    30. [30]

      Heinze T, Dicke R, Koschella A, et al. Macromol. Chem. Phys., 2000, 201(201): 627~631.

    31. [31]

    32. [32]

      Ren H, Zong M H, Wu H, et al. Ind. Eng. Chem. Res., 2016, 55(6): 1788~1795. 

    33. [33]

    34. [34]

      Ohira K, Abe Y, Kawatsura M, et al. ChemSusChem, 2012, 5(2): 388~391. 

    35. [35]

      Abe M, Fukaya Y, Ohno H. Chem. Commun., 2012, 48(12): 1808~1810. 

    36. [36]

      Cheng G, Varanasi P, Arora R, et al. J. Phys. Chem. B, 2012, 116(33): 10049~10054. 

    37. [37]

      Yuan X, Yuan C P, Shi W T, et al. ChemistrySelect, 2017, 2(13): 3783~3787. 

    38. [38]

      Gale E, Wirawan R H, Silveira R L, et al. ACS Sustain. Chem. Eng., 2016, 4(11): 6200~6207. 

    39. [39]

       

    40. [40]

    41. [41]

      Xu A R, Cao L L, Wang B J. Carbohydr. Polym., 2015, (125): 249~254. 

    42. [42]

      Velioglu S, Yao X, Devemy J, et al. J. Phys. Chem. B, 2014, 118(51): 14860. 

    43. [43]

      Andanson J, Padua A A H, Gomes M F C. Chem. Commun., 2015, 51(21): 4485~4487. 

    44. [44]

      Andanson J, Bordes E, Devemy J, et al. Green Chem., 2014, 16(5): 2528~2538. 

    45. [45]

       

    46. [46]

       

    47. [47]

      Liu R, Zhang J, Sun S, et al. J. Eng. Fiber Fabr., 2019, 14: 1~7.

    48. [48]

      Li Y, Wang J J, Liu X M, et al. Chem. Sci., 2018, 9(17): 4027~4043. 

    49. [49]

      Li Y, Liu X M, Zhang S J, et al. Phys. Chem. Chem. Phys., 2015, 17(27): 17894~17905. 

    50. [50]

      Fukaya Y, Hayashi K, Wada M, et al. Green Chem., 2008, 10(1): 44~46. 

    51. [51]

      Lu B L, Xu A R, Wang J J. Green Chem., 2014, 16(3): 1326~1335. 

    52. [52]

      Li Y, Liu X M, Zhang Y Q, et al. ACS Sustain. Chem. Eng., 2017, 5(4): 3417~3428. 

    53. [53]

      Li X, Li H C, Ling Z, et al. Macromolecules, 2020, 53(9): 3284~3295. 

    54. [54]

      Lindman B, Karlstrom G, Stigsson L. J. Mol. Liq., 2010, 156(1): 76~81. 

    55. [55]

    56. [56]

       

    57. [57]

      Vitz J, Erdmenger T, Haensch C, et al. Green Chem., 2009, 11(3): 417~424. 

    58. [58]

      Mazza M, Catana D, Vacagarcia C, et al. Cellulose, 2009, 16(2): 207~215. 

    59. [59]

      Zhang J M, Wu J, Yu J, et al. Mater. Chem. Front., 2017, 1(7): 1273~1290. 

    60. [60]

      André Pinkert K N M, Pang S S. Ind. Eng. Chem. Res., 2010, 49(22): 11121~11130. 

    61. [61]

    62. [62]

    63. [63]

      Wang Y, Liu L, Chen P, et al. Phys. Chem. Chem. Phys., 2018, 20(20): 14223~14233. 

    64. [64]

       

    65. [65]

      Zhao Y L, Liu X M, Wang J J, et al. Carbohydr. Polym., 2013, 94(2): 723~730. 

    66. [66]

      Yuan X M, Cheng G. Phys. Chem. Chem. Phys., 2015, 17(47): 31592~31607. 

    67. [67]

       

    68. [68]

       

    69. [69]

      Huang J, Hou S N, Chen R Y. Bioresources, 2019, 14(4): 7805~7820.

    70. [70]

       

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    3. [3]

      Yonghui Wang Weilin Chen Yangguang Li . Knowledge Construction of “Solubility of Inorganic Substances” in Elemental Chemistry Teaching. University Chemistry, 2024, 39(4): 261-267. doi: 10.3866/PKU.DXHX202312102

    4. [4]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    5. [5]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . Efficient adsorption of hardness ions by a mordenite-loaded, nitrogen-doped porous carbon nanofiber cathode in capacitive deionization. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    6. [6]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    8. [8]

      Kexin Dong Chuqi Shen Ruyu Yan Yanping Liu Chunqiang Zhuang Shijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-. doi: 10.3866/PKU.WHXB202310013

    9. [9]

      Mei Yan Rida Feng Yerdos·Tohtarkhan Biao Long Li Zhou Chongshen Guo . Expansion and Extension of Liquid Saturated Vapor Measurement Experiment. University Chemistry, 2024, 39(3): 294-301. doi: 10.3866/PKU.DXHX202308103

    10. [10]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    11. [11]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

    12. [12]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    13. [13]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Manman Jin Zhiguo Lv Qingtao Niu . Teaching Reformation and Case Study for “Chemical Process Development and Design” Based on “Just-in-Time” Dynamic and Accurate Matching Industrial Needs. University Chemistry, 2024, 39(11): 108-116. doi: 10.12461/PKU.DXHX202403030

    16. [16]

      Xuan Zhou Yi Fan Zhuoqi Jiang Zhipeng Li Guowen Yuan Laiying Zhang Xu Hou . Liquid Gating Mechanism and Basic Properties Characterization: a New Experimental Design for Interface and Surface Properties in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 113-120. doi: 10.12461/PKU.DXHX202407111

    17. [17]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    18. [18]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    19. [19]

      Dongxue Han Huiliang Sun Li Niu . Virtual Reality Technology for Safe and Green University Chemistry Experimental Education. University Chemistry, 2024, 39(8): 191-196. doi: 10.3866/PKU.DXHX202312055

    20. [20]

      Meihong Luo Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055

Metrics
  • PDF Downloads(125)
  • Abstract views(3947)
  • HTML views(1617)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return