Citation: SHEN Yang, ZHAO Kun, HE Fang, LI Hai-bin. Synthesis of three-dimensionally ordered macroporous LaFe0.7Co0.3O3 perovskites and their performance for chemical-looping steam reforming of methane[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(10): 1168-1176. shu

Synthesis of three-dimensionally ordered macroporous LaFe0.7Co0.3O3 perovskites and their performance for chemical-looping steam reforming of methane

  • Corresponding author: HE Fang, hefang@ms.giec.ac.cn
  • Received Date: 5 May 2016
    Revised Date: 22 June 2016

Figures(9)

  • Three-dimensionally ordered macroporous (3DOM) LaFe0.7Co0.3O3 perovskite-type oxides were synthesized using a polystyrene (PS) colloidal crystal templating method. The obtained 3DOM LaFe0.7Co0.3O3 perovskites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Brunauere-Emmette-Teller (BET) surface area. Its performance as oxygen carriers in chemical looping steam methane reforming (CL-SMR) to produce syngas (H2 + CO) and hydrogen were investigated in a fixed-bed reactor. The size of PS spheres obviously increases as the styrene addition increases. The calcination temperature is the major factor to affect the prepared 3DOM perovskite. SEM and TEM analysis show that the samples calcined at 500, 800 and 850℃ exhibit good 3DOM structures which collapse when the sample is calcined at 900℃. XRD results suggest that the obtained 3DOM LaFe0.7Co0.3O3 perovskites are pure crystalline. Two kinds of oxygen species, bulk lattice oxygen and surface adsorbed oxygen, are found to exist on the 3DOM LaFe0.7Co0.3O3 perovskites. The surface oxygen contributes to the complete oxidization of methane to CO2 and H2O in beginning of the reaction, while the bulk lattice oxygen tends towards partial methane oxidation to H2 and CO. In the methane conversion step, methane is partially oxidized into syngas at a H2/CO mol ratio close to 2:1 by the 3DOM- LaFe0.7Co0.3O3 in a wide range of the reactions, suggesting that the sample exhibits a good resistance to carbon deposition. In the steam oxidation step, the reduced perovskites are oxidized by steam to generate hydrogen with hydrogen productivity about 4 mmol/g oxygen carriers.
  • 加载中
    1. [1]

      RICHTER H J, KNOCHE K F.Reversibility of combustion process, efficiency and costing, second Law analysis processes[C].Washington DC:ACS Symposium Series, 1983, 235:71-85.

    2. [2]

      LI Kong-zhai, WANG Hua, WEI Yong-gang, AO Xian-quan, LIU Ming-chun. Partial oxidation of methane to synthesis gas using lattice oxygen[J]. Prog Chem, 2008,20(9):1306-1314.  

    3. [3]

      YAN Qian-gu, YU Zuo-long, YUAN Song-yue. Research progresses in methane partial oxidation tosynthesis gas[J]. Chem Eng Oil Gas, 1997,26(3):145-151.  

    4. [4]

      ZAFAR Q, MATTISSON T, GEVERT B. Integrated hydrogen and power productionwith CO2 capture using chemical-looping reforming-redox reactivity ofparticles of CuO, Mn2O3, NiO, and Fe2O3 using SiO2 as a support[J]. Ind Eng Chem Res, 2005,44(6):3485-3496.

    5. [5]

      DE DIEGO L F, ORTIZ M, ADÁNEZ J, GARCÍA-LABIANO F, ABAD A, GAYÁN P. Synthesis gas generation by chemical-looping reforming in a batch fluidized bed reactor using Ni-based oxygen carriers[J]. Chem Eng J, 2008,144(2):289-298. doi: 10.1016/j.cej.2008.06.004

    6. [6]

      RYDÉN M, LYNGFELT A, MATTISSON T. Synthesis gas generation by chemicallooping reforming in a continuously operating laboratory reactor[J]. Fuel, 2006,85(12/13):1631-1641.

    7. [7]

      RYDÉN M, LYNGFELT A, MATTISSON T, CHEN D, HOLMEN A, BJØRGUM E. Novel oxygen-carrier materials for chemical-looping combustion and chemical-looping reforming;LaxSr1-xFeyCo1-yO3-δ perovskites and mixed-metal oxides of NiO, Fe2O3 and Mn3O4[J]. Int J Greenh Gas Control, 2008,2(1):21-36. doi: 10.1016/S1750-5836(07)00107-7

    8. [8]

      CHENS Q, LI UY. LaFeyNi1-yO3 supported nickel catalysts used for steam reforming of ethanol[J]. Int J Hydrogen Energy, 2009,34(11):4735-4746. doi: 10.1016/j.ijhydene.2009.03.048

    9. [9]

      LI Ran-jia, YU Chang-chun, DAI Xiao-ping, SHEN Shi-kong. Selective oxidation of methane to synthesis gas using lattice oxygen from perovskite La0.8Sr0.2 FeO3 catalyst[J]. Chin J Catal, 2002,23(6):549-554.

    10. [10]

      HE F, LI X, ZHAO K, HUANG Z, WEI G. The use of La1-xSrxFeO3 perovskite-type oxides as oxygen carriersin chemical-looping reforming of methane[J]. Fuel, 2013,108(11):465-473.

    11. [11]

      JENNIF ER ER, ANJA O, YNGVE L, RICHARD B. La0.8Sr0.2Co0.2Fe0.8O3-δ as a potential oxygen carrier in a chemical looping type reactor, an in-situ powder X-ray diffraction study[J]. J Mater Chem, 2005,15:1931-1937. doi: 10.1039/b416526h

    12. [12]

      SADAKANE M, HORIUCHI T, KATO N, TAKAHASHI C, UEDA W. Facile preparation of three-dimensionally ordered macroporous alumina, iron oxide, chromium oxide, manganese oxide, and their mixed-metal oxides with high porosity[J]. Chem Mater, 2007,19(23):5779-5785. doi: 10.1021/cm071823r

    13. [13]

      HE Fang, ZHAO Kun, HUANG Zhen, LI Xin-ai, WEI Guo-qiang, LI Hai-bin. Synthesis of three-dimensionally ordered macroporous LaFeO3 perovskites and their performance for chemical-looping reforming of methane[J]. Chin J Catal, 2013,34(6):1242-1249. doi: 10.1016/S1872-2067(12)60563-4

    14. [14]

      ZHAO K, HE F, HUANG Z, ZHENG A, LI H. Three-dimensionally ordered macroporous LaFeO3 perovskites for chemical-looping steam reforming of methane[J]. Int J Hydrogen Energy, 2014,39(7):3243-3252. doi: 10.1016/j.ijhydene.2013.12.046

    15. [15]

      SONG Z Q, POEHLEIN G W. Particle nucleation in emulsifier-free aqueous-phase polymerization:Stage 1[J]. J ColloidInterf, 1989,128(2):486-500.

    16. [16]

      SONG Z Q, POEHLEIN G W. Particle formation inemulsifier-freeaqueous-phase polymerization of styrene[J]. J ColloidInterf, 1989,128(2):501-510.

    17. [17]

      ZHENG Y, WEI Y G, LI K Z, ZHU X, WANG H, WANG Y H. Chemical-looping steam methane reforming over macroporous CeO2-ZrO2 solid solution:Effect of calcination temperature[J]. Int J Hydrogen Energy, 2014,39(25):13361-13368. doi: 10.1016/j.ijhydene.2014.04.116

  • 加载中
    1. [1]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    2. [2]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    3. [3]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    4. [4]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    5. [5]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    6. [6]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    7. [7]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    9. [9]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    10. [10]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    12. [12]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    13. [13]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    14. [14]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    15. [15]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    16. [16]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

Metrics
  • PDF Downloads(0)
  • Abstract views(1022)
  • HTML views(209)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return