Citation: Xu Yeming, Zheng Chuanming, Zhang Yunhong. Application Prospect of Ammonia Energy as Clean Energy[J]. Chemistry, ;2019, 82(3): 214-220. shu

Application Prospect of Ammonia Energy as Clean Energy

  • Corresponding author: Zhang Yunhong, yhz@bit.edu.cn
  • Received Date: 31 October 2018
    Accepted Date: 26 November 2018

Figures(1)

  • Synthetic ammonia is a low-cost chemical material. It is a novel clean energy with broad application prospects and possesses high energy density and octane value, convenient conditions for storage and transportation, and combustion without CO2 emissions. Ammonia can replace gasoline, diesel and other fossil fuels and supply clean fuel for automotive engines, moreover, it can provide hydrogen energy for vehicle fuel cells through catalytic decomposition. Being the ideal alternative to traditional petroleum fuels, ammonia offers another fuel choice for solving the problems of environmental pollution and energy shortage. This paper mainly focuses on the advantages and maneuverability of ammonia used as engine fuel and fuel cell raw material in automotive power source, and the related research progress at home and abroad. The research progress and limitation of the catalytic system for ammonia decomposition and the research status of synthetic ammonia were introduced.
  • 加载中
    1. [1]

      A Züttel, A Remhof, A Borgschulte et al. Philos T. R. Soc. A, 2010, 368 (1923):3329~3342. 

    2. [2]

       

    3. [3]

       

    4. [4]

      A Afif, N Radenahmad, Q Cheok. Renew. Sust. Energ. Rev., 2016, 60:822~835. 

    5. [5]

      C Zamfirescu, I Dincer. J. Power Sources, 2008, 185 (1):459~465. 

    6. [6]

      A Klerke, C H Christensen, J K Nørskov. J. Mater. Chem., 2008, 18(20):2304~2310. 

    7. [7]

       

    8. [8]

    9. [9]

      D Miura, T Tezuka. Energy, 2014, 68(4):428~436.

    10. [10]

      C S Mørch, A Bjerre, M P Gøttrup et al. Fuel, 2011, 90(2):854~864. 

    11. [11]

       

    12. [12]

       

    13. [13]

      A J Reiter, S C Kong. Energ Fuel, 2008, 22(5):2963~2971. 

    14. [14]

      R Liu, D S Ting, M D Checkel. SAE Paper, 2003-01-3095.

    15. [15]

      K H Ryu, G Zacharakis-Jutz, S C Kong. SAE Paper, 2013-01-1133.

    16. [16]

      K H Ryu, G E Zacharakis. Appl. Energ., 2014, 116(3):206~215.

    17. [17]

      M Comotti, S Frigo. Int. J. Hydrogen Energ, 2015, 40(33):10673~10686. 

    18. [18]

      K H Ryu, G E Zacharakis-Jutz, S C Kong. Int. J. Hydrogen Energ, 2014, 39(5):2390~2398. 

    19. [19]

    20. [20]

      C W Gross, S C Kong. Fuel, 2013, 103:1069~1079. 

    21. [21]

    22. [22]

      M I Lamas, C G Rodriguez. Int. J. Hydrogen Energ, 2017, 42(41):26132~26141. 

    23. [23]

       

    24. [24]

      N J J Dekker, G Rietveld. J. Fuel Cell Sci. Tech., 2006, 3(4):499~502. 

    25. [25]

       

    26. [26]

       

    27. [27]

       

    28. [28]

      N M Adli, H Zhang, S Mukherjee et al. J. Electrochem. Soc., 2018, 165 (15):3130~3147. 

    29. [29]

      A Fuertea, R X Valenzuelaa, M J Escudero et al. J. Power Sources, 2009, 192 (1):170~174. 

    30. [30]

    31. [31]

    32. [32]

      R Lan, S Tao. Front. Energy Res., 2014, 2:35.

    33. [33]

      A Wojcik, H Middleton, I Damopoulos et al. J. Power Sources, 2003, 118 (1-2):342~348. 

    34. [34]

      C G Vayenas, R D Farr. Science, 1980, 208(4444):593~594. 

    35. [35]

       

    36. [36]

      M Ni, M K H Leung, D Y C Leung. Int. J. Energy Res., 2009, 33(11):943~959. 

    37. [37]

       

    38. [38]

      S E Gay, M Ehsani. SAE Paper, 2003-01-2251.

    39. [39]

       

    40. [40]

      K Okura, T Okanishi, H Muroyama et al. ChemCatChem, 2016, 8(18):2988~2995. 

    41. [41]

    42. [42]

      G Lanzaniab, K Laasonen. Int. J. Hydrogen, 2010, 35(13):6571~6577. 

    43. [43]

       

    44. [44]

      X Z Duan, J H Zhou, G Qian et al. Chin. J. Catal., 2010, 31(8):979~986. 

    45. [45]

       

    46. [46]

      S F Yin, B Q Xu, X P Zhou et al. Appl. Catal. A, 2006, 301(24):202~210.

    47. [47]

      G Papapolymerou, V Bontozoglou. J. Mol. Catal. A, 1997, 120(1-3):165~171. 

    48. [48]

      S F Yin, B Q Xu, W X Zhu et al. Catal. Today, 2004, 93~95:27~38.

    49. [49]

      J C Ganley, F S Thomas, E G Seebauer et al. Catal. Lett., 2004, 96(3-4):117~122.

    50. [50]

      J L Cao, Z L Yan, Q F Deng et al. Catal. Sci. Technol., 2014, 4(2):361~368. 

    51. [51]

      J L Cao, Z L Yan, Q F Deng et al. Int. J. Hydrogen, 2014, 39(11):5747~5755. 

    52. [52]

      X Duan, J Ji, G Qian et al. J. Mol. Catal. A, 2012, 357:81~86. 

    53. [53]

       

    54. [54]

      S Wiser, E J Markel. J. Catal., 1994, 145(2):335~343. 

    55. [55]

       

    56. [56]

      W Q Zheng, J Zhang, Q J Ge et al. Appl. Catal. B, 2008, 80(1):98~105.

    57. [57]

       

    58. [58]

      S J Wang, S F Yin, B Q Xu et al. Appl. Catal. B, 2004, 52(4):287~299. 

    59. [59]

      S F Yin, B Xu, S Wang et al. Catal. Lett., 2004, 96(3):113~116.

    60. [60]

       

    61. [61]

       

    62. [62]

    63. [63]

      F Bozso, G Ertl, M Grunze et al. Appl. Surf. Sci., 1977, 1(1):103~119. 

    64. [64]

       

    65. [65]

       

    66. [66]

  • 加载中
    1. [1]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    2. [2]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    3. [3]

      Qin Hu Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . Ni掺杂构建电子桥及激活MoS2惰性基面增强光催化分解水产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-. doi: 10.3866/PKU.WHXB202406024

    4. [4]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    5. [5]

      Lubing Qin Fang Sun Meiyin Li Hao Fan Likai Wang Qing Tang Chundong Wang Zhenghua Tang . 原子精确的(AgPd)27团簇用于硝酸盐电还原制氨:一种配体诱导策略来调控金属核. Acta Physico-Chimica Sinica, 2025, 41(1): 2403008-. doi: 10.3866/PKU.WHXB202403008

    6. [6]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    7. [7]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    9. [9]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    10. [10]

      Zhao Lu Hu Lv Qinzhuang Liu Zhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-. doi: 10.3866/PKU.WHXB202405005

    11. [11]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    12. [12]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . Facile synthesis of hierarchical Ti3C2/Bi12O17Br2 Schottky heterojunction with photothermal effect for solar-driven antibiotics photodegradation. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    15. [15]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    16. [16]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    17. [17]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    18. [18]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    19. [19]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    20. [20]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

Metrics
  • PDF Downloads(127)
  • Abstract views(3313)
  • HTML views(1451)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return