Citation: ZHENG Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(12): 1494-1501. shu

Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides

  • Corresponding author: XU Xiu-feng, xxf@ytu.edu.cn
  • Received Date: 17 August 2016
    Revised Date: 9 October 2016

Figures(14)

  • Mg-Co and Mg-Mn-Co composite oxides with different compositions were prepared by sol-gel method for N2O catalytic decomposition in the presence of oxygen. Of Mg-Mn-Co catalysts, the one with higher activity was impregnated by K2CO3 solution to make K-modified catalyst. These catalysts were characterized by X-ray diffraction(XRD), nitrogen physisorption (BET), scanning electron microscopy(SEM), temperature-programmed reduction of hydrogen(H2-TPR), and temperature-programmed desorption of oxygen(O2-TPD). The effect of preparation parameters such as compositions and potassium loadings on their catalytic activity has been investigated. The results show that K-modified catalysts exhibit better activity and higher resistance towards water in contrast to un-modified catalyst due to the weakness of surface metal-oxygen bonds. Among these catalysts, 0.02K/MgMn0.2Co1.8O4 is the most active, over which 97% and 60% conversions of N2O can be reached at 400℃ after continuous running for 50 h under the atmosphere of oxygen-alone and oxygen-steam together, respectively. When the steam is switched off, the catalytic activity of 0.02K/MgMn0.2Co1.8O4 can be restored to large extent, indicating the good water-resistance of K-modified catalyst.
  • 加载中
    1. [1]

      PIETROGIACOMI D, CAMPA M C, CARBONE L R, TUTI S, OCCHIUZZI M. N2O decomposition on CoOx,CuOx,FeOx or MnOx supported on ZrO2:The effect of zirconia doping with sulfates or K+ on catalytic activity[J]. Appl Catal B:Environ, 2016,187:218-227. doi: 10.1016/j.apcatb.2016.01.018

    2. [2]

      ASANO K, OHNISHI C, IWAMOTO S, SHIOYA Y, INOUE M. Potassium-doped Co3O4 catalyst for direct decomposition of N2O[J]. Appl Catal B:Environ, 2008,78(3/4):242-249.

    3. [3]

      XUE L, ZHANG C B, HE H, TERAOKA Y. Promotion effect of residual K on the decomposition of N2O over cobalt-cerium mixed oxide catalyst[J]. Catal Today, 2007,126(3/4):449-455.

    4. [4]

      HUSSAIN M, FINO D, RUSSO N. N2O decomposition by mesoporous silica supported Rh catalysts[J]. J Hazard Mater, 2012,211-212:255-265. doi: 10.1016/j.jhazmat.2011.08.024

    5. [5]

      KLYUSHINA, PACULTOVÁK, KREJČOVÁS, SLOWIK, JIRÁTOVÁK, KOVANDA, RYCZKOWSKI, OBALOVÁL. Advantages of stainless steel sieves as support for catalytic N2O decomposition over K-doped Co3O4[J]. Catal Today, 2015,257(1):2-10.

    6. [6]

      ZABILSKIY M, DJINOVĆ P, ERJAVEC B, DRAŽĆG , PINTAR A. Small CuO clusters on CeO2 nanospheres as active species for catalytic N2O decomposition[J]. Appl Catal B:Environ, 2015,163:113-122. doi: 10.1016/j.apcatb.2014.07.057

    7. [7]

      AMROUSSE R, KATSUMI T. Substituted ferrite MxFe1-xFe2O4(M=Mn,Zn) catalysts for N2O catalytic decomposition processes[J]. Catal Commun, 2012,26:194-198. doi: 10.1016/j.catcom.2012.05.024

    8. [8]

      KUMAR S, VINU A, SUBBRT J, BAKARDJIEVA S, RAYALU S, TERAOKA Y, LABHSETWAR N. Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control[J]. Catal Today, 2012,198(1):125-132. doi: 10.1016/j.cattod.2012.06.015

    9. [9]

      XUE Z W, SHEN Y S, SHEN S B, LI C L, ZHU S M. Promotional effects of Ce4+,La3+ and Nd3+ incorporations on catalytic performance of Cu-Fe-Ox for decomposition of N2O[J]. J Ind Eng Chem, 2015,30:98-105. doi: 10.1016/j.jiec.2015.05.008

    10. [10]

      LIN Y, MENG T, MA Z. Catalytic decomposition of N2O over RhOx supported on metal phosphates[J]. J Ind Eng Chem, 2015,28:138-146. doi: 10.1016/j.jiec.2015.02.009

    11. [11]

      DACQUIN J P, DUJARDIN C, GRANGER P. Surface reconstruction of supported Pd on LaCoO3:Consequences on the catalytic properties in the decomposition of N2O[J]. J Catal, 2008,253(1):37-49. doi: 10.1016/j.jcat.2007.10.023

    12. [12]

      BEYER H, EMMERICH J, CHATZIAPOSTOLOU K, KÖHLER K. Decomposition of nitrous oxide by rhodium catalysts:Effect of rhodium particle size and metal oxide support[J]. Appl Catal A:Gen, 2011,391(1/2):411-416.  

    13. [13]

      PACHATOURIDOU E, PAPISTA E, DELIMITIS A, VASILIADES M A, EFSTATHIOU A M, AMIRIDIS M D, ALEXEEV O S, BLOOM D, MAMELLOS G E, KONSOLAKIS M, ILIOPOULOU E. N2O decomposition over ceria-promoted Ir/Al2O3 catalysts:The role of ceria[J]. Appl Catal B:Environ, 2016,187:259-268. doi: 10.1016/j.apcatb.2016.01.049

    14. [14]

      BERRIER E, OVSITSER O, KONDRATENKO E V, SCHWIDDER M, GRÜNERT W, BRÜCKNER A. Temperature-dependent N2O decomposition over Fe-ZSM-5:Identification of sites with different activity[J]. J Catal, 2007,249(1):67-78. doi: 10.1016/j.jcat.2007.03.027

    15. [15]

      CÜRDANELI P E, ÖZKAR S. Ruthenium (Ⅲ) ion-exchanged zeolite Y as highly active and reusable catalyst in decomposition of nitrous oxide to sole nitrogen and oxygen[J]. Microporous Mesoporous Mater, 2014,196:51-58. doi: 10.1016/j.micromeso.2014.04.052

    16. [16]

      MENG T, REN N, MA Z. Silicalite-1@Cu-ZSM-5 core-shell catalyst for N2O decomposition[J]. J Mol Catal A:Chem, 2015,404-405:233-239. doi: 10.1016/j.molcata.2015.05.006

    17. [17]

      YAN L, REN T, WANG X L, GAO Q, JI D, SUO J S. Excellent catalytic performance of ZnxCo1-xCo2O4 spinel catalysts for the decomposition of nitrous oxide[J]. Catal Commun, 2003,4(10):505-509. doi: 10.1016/S1566-7367(03)00131-6

    18. [18]

      YAN L, REN T, WANG X L, JI D, SUO J S. Catalytic decomposition of N2O over MxCo1-xCo2O4(M=Ni,Mg) spinel oxides[J]. Appl Catal B:Environ, 2003,45(2):85-90. doi: 10.1016/S0926-3373(03)00174-7

    19. [19]

      ABU-ZIED B M, SOLIMAN S A, ABDELLAH S E. Pure and Ni-substituted Co3O4 spinel catalysts for direct N2O decomposition[J]. Chin J Catal, 2014,35(7):1105-1112. doi: 10.1016/S1872-2067(14)60058-9

    20. [20]

      MANIAK G, STELMACHOWSKI P, STANEK J J, KOTARBA A, SOJKA Z. Catalytic properties in N2O decomposition of mixed cobalt-iron spinels[J]. Catal Commun, 2011,15(1):127-131. doi: 10.1016/j.catcom.2011.08.027

    21. [21]

      DOU Zhe, ZHANG Hai-jie, PAN Yan-fei, XU Xiu-feng. Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014,42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5 

    22. [22]

      WANG Jian, DOU Zhe, PAN Yan-fei, XU Xiu-feng. MnxCo3-xO4 composite oxide and modified catalyst catalytic decomposition of N2O[J]. J Mol Catal (China), 2015,29(3):246-255.

    23. [23]

      CHELLAM U, XU Z P, ZENG H C. Low-temperature synthesis of MgxCo1-xCo2O4 spinel catalysts for N2O decomposition[J]. Chem Mater, 2000,12:650-658. doi: 10.1021/cm990355l

    24. [24]

      KUBOŇOVÁL , FRIDRICHOVÁD , WACH A, KUŚTROWSKR P, OBALOVÁL , COOL P. Catalytic activity of rhodium grafted on ordered mesoporous silicamaterials modified with aluminum in N2O decomposition[J]. Catal Today, 2015,257:51-58. doi: 10.1016/j.cattod.2015.03.019

    25. [25]

      PRRUTKO L V, CHERNYAVSKY V S, STAROKON E V, IVANOV A A, KHARITONOV A S, PANOV G. The role of a-sites in N2O decomposition over FeZSM-5.Comparison with the oxidation of benzene to phenol[J]. Appl Catal B:Environ, 2009,91(1/2):174-179.

    26. [26]

      WU Cang-cang, ZHANG Hai-jie, WANG Jian, ZHENG Li, XU Xiu-feng. The preparation parameters screening of Co-Al spinel oxides for N2O catalytic decomposition[J]. J Mol Catal (China), 2016,30(1):62-71.

    27. [27]

      AMROUSSE R, TSUTSUMI A, BACHAR A, LAHCENE D. N2O catalytic decomposition over nano-sized particles of Co-substituted Fe3O4 substrates[J]. Appl Catal A:Gen, 2013,450:253-260. doi: 10.1016/j.apcata.2012.10.036

    28. [28]

      FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B:Environ, 2015,176-177:298-305. doi: 10.1016/j.apcatb.2015.04.002

  • 加载中
    1. [1]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    4. [4]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    8. [8]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    9. [9]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    14. [14]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    20. [20]

      Jinwang Wu Qijing Xie Chengliang Zhang Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050

Metrics
  • PDF Downloads(1)
  • Abstract views(889)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return