Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides
- Corresponding author: XU Xiu-feng, xxf@ytu.edu.cn
Citation:
ZHENG Li, WU Cang-cang, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(12): 1494-1501.
PIETROGIACOMI D, CAMPA M C, CARBONE L R, TUTI S, OCCHIUZZI M. N2O decomposition on CoOx,CuOx,FeOx or MnOx supported on ZrO2:The effect of zirconia doping with sulfates or K+ on catalytic activity[J]. Appl Catal B:Environ, 2016,187:218-227. doi: 10.1016/j.apcatb.2016.01.018
ASANO K, OHNISHI C, IWAMOTO S, SHIOYA Y, INOUE M. Potassium-doped Co3O4 catalyst for direct decomposition of N2O[J]. Appl Catal B:Environ, 2008,78(3/4):242-249.
XUE L, ZHANG C B, HE H, TERAOKA Y. Promotion effect of residual K on the decomposition of N2O over cobalt-cerium mixed oxide catalyst[J]. Catal Today, 2007,126(3/4):449-455.
HUSSAIN M, FINO D, RUSSO N. N2O decomposition by mesoporous silica supported Rh catalysts[J]. J Hazard Mater, 2012,211-212:255-265. doi: 10.1016/j.jhazmat.2011.08.024
KLYUSHINA, PACULTOVÁK, KREJČOVÁS, SLOWIK, JIRÁTOVÁK, KOVANDA, RYCZKOWSKI, OBALOVÁL. Advantages of stainless steel sieves as support for catalytic N2O decomposition over K-doped Co3O4[J]. Catal Today, 2015,257(1):2-10.
ZABILSKIY M, DJINOVĆ P, ERJAVEC B, DRAŽĆG , PINTAR A. Small CuO clusters on CeO2 nanospheres as active species for catalytic N2O decomposition[J]. Appl Catal B:Environ, 2015,163:113-122. doi: 10.1016/j.apcatb.2014.07.057
AMROUSSE R, KATSUMI T. Substituted ferrite MxFe1-xFe2O4(M=Mn,Zn) catalysts for N2O catalytic decomposition processes[J]. Catal Commun, 2012,26:194-198. doi: 10.1016/j.catcom.2012.05.024
KUMAR S, VINU A, SUBBRT J, BAKARDJIEVA S, RAYALU S, TERAOKA Y, LABHSETWAR N. Catalytic N2O decomposition on Pr0.8Ba0.2MnO3 type perovskite catalyst for industrial emission control[J]. Catal Today, 2012,198(1):125-132. doi: 10.1016/j.cattod.2012.06.015
XUE Z W, SHEN Y S, SHEN S B, LI C L, ZHU S M. Promotional effects of Ce4+,La3+ and Nd3+ incorporations on catalytic performance of Cu-Fe-Ox for decomposition of N2O[J]. J Ind Eng Chem, 2015,30:98-105. doi: 10.1016/j.jiec.2015.05.008
LIN Y, MENG T, MA Z. Catalytic decomposition of N2O over RhOx supported on metal phosphates[J]. J Ind Eng Chem, 2015,28:138-146. doi: 10.1016/j.jiec.2015.02.009
DACQUIN J P, DUJARDIN C, GRANGER P. Surface reconstruction of supported Pd on LaCoO3:Consequences on the catalytic properties in the decomposition of N2O[J]. J Catal, 2008,253(1):37-49. doi: 10.1016/j.jcat.2007.10.023
BEYER H, EMMERICH J, CHATZIAPOSTOLOU K, KÖHLER K. Decomposition of nitrous oxide by rhodium catalysts:Effect of rhodium particle size and metal oxide support[J]. Appl Catal A:Gen, 2011,391(1/2):411-416.
PACHATOURIDOU E, PAPISTA E, DELIMITIS A, VASILIADES M A, EFSTATHIOU A M, AMIRIDIS M D, ALEXEEV O S, BLOOM D, MAMELLOS G E, KONSOLAKIS M, ILIOPOULOU E. N2O decomposition over ceria-promoted Ir/Al2O3 catalysts:The role of ceria[J]. Appl Catal B:Environ, 2016,187:259-268. doi: 10.1016/j.apcatb.2016.01.049
BERRIER E, OVSITSER O, KONDRATENKO E V, SCHWIDDER M, GRÜNERT W, BRÜCKNER A. Temperature-dependent N2O decomposition over Fe-ZSM-5:Identification of sites with different activity[J]. J Catal, 2007,249(1):67-78. doi: 10.1016/j.jcat.2007.03.027
CÜRDANELI P E, ÖZKAR S. Ruthenium (Ⅲ) ion-exchanged zeolite Y as highly active and reusable catalyst in decomposition of nitrous oxide to sole nitrogen and oxygen[J]. Microporous Mesoporous Mater, 2014,196:51-58. doi: 10.1016/j.micromeso.2014.04.052
MENG T, REN N, MA Z. Silicalite-1@Cu-ZSM-5 core-shell catalyst for N2O decomposition[J]. J Mol Catal A:Chem, 2015,404-405:233-239. doi: 10.1016/j.molcata.2015.05.006
YAN L, REN T, WANG X L, GAO Q, JI D, SUO J S. Excellent catalytic performance of ZnxCo1-xCo2O4 spinel catalysts for the decomposition of nitrous oxide[J]. Catal Commun, 2003,4(10):505-509. doi: 10.1016/S1566-7367(03)00131-6
YAN L, REN T, WANG X L, JI D, SUO J S. Catalytic decomposition of N2O over MxCo1-xCo2O4(M=Ni,Mg) spinel oxides[J]. Appl Catal B:Environ, 2003,45(2):85-90. doi: 10.1016/S0926-3373(03)00174-7
ABU-ZIED B M, SOLIMAN S A, ABDELLAH S E. Pure and Ni-substituted Co3O4 spinel catalysts for direct N2O decomposition[J]. Chin J Catal, 2014,35(7):1105-1112. doi: 10.1016/S1872-2067(14)60058-9
MANIAK G, STELMACHOWSKI P, STANEK J J, KOTARBA A, SOJKA Z. Catalytic properties in N2O decomposition of mixed cobalt-iron spinels[J]. Catal Commun, 2011,15(1):127-131. doi: 10.1016/j.catcom.2011.08.027
DOU Zhe, ZHANG Hai-jie, PAN Yan-fei, XU Xiu-feng. Catalytic decomposition of N2O over potassium-modified Cu-Co spinel oxides[J]. J Fuel Chem Technol, 2014,42(2):238-245. doi: 10.1016/S1872-5813(14)60016-5
WANG Jian, DOU Zhe, PAN Yan-fei, XU Xiu-feng. MnxCo3-xO4 composite oxide and modified catalyst catalytic decomposition of N2O[J]. J Mol Catal (China), 2015,29(3):246-255.
CHELLAM U, XU Z P, ZENG H C. Low-temperature synthesis of MgxCo1-xCo2O4 spinel catalysts for N2O decomposition[J]. Chem Mater, 2000,12:650-658. doi: 10.1021/cm990355l
KUBOŇOVÁL , FRIDRICHOVÁD , WACH A, KUŚTROWSKR P, OBALOVÁL , COOL P. Catalytic activity of rhodium grafted on ordered mesoporous silicamaterials modified with aluminum in N2O decomposition[J]. Catal Today, 2015,257:51-58. doi: 10.1016/j.cattod.2015.03.019
PRRUTKO L V, CHERNYAVSKY V S, STAROKON E V, IVANOV A A, KHARITONOV A S, PANOV G. The role of a-sites in N2O decomposition over FeZSM-5.Comparison with the oxidation of benzene to phenol[J]. Appl Catal B:Environ, 2009,91(1/2):174-179.
WU Cang-cang, ZHANG Hai-jie, WANG Jian, ZHENG Li, XU Xiu-feng. The preparation parameters screening of Co-Al spinel oxides for N2O catalytic decomposition[J]. J Mol Catal (China), 2016,30(1):62-71.
AMROUSSE R, TSUTSUMI A, BACHAR A, LAHCENE D. N2O catalytic decomposition over nano-sized particles of Co-substituted Fe3O4 substrates[J]. Appl Catal A:Gen, 2013,450:253-260. doi: 10.1016/j.apcata.2012.10.036
FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels CuxCo3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B:Environ, 2015,176-177:298-305. doi: 10.1016/j.apcatb.2015.04.002
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Xin Han , Zhihao Cheng , Jinfeng Zhang , Jie Liu , Cheng Zhong , Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Ruolin CHENG , Haoran WANG , Jing REN , Yingying MA , Huagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
Jinwang Wu , Qijing Xie , Chengliang Zhang , Haifeng Shi . 自旋极化增强ZnFe1.2Co0.8O4/BiVO4 S型异质结光催化性能降解四环素. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-. doi: 10.1016/j.actphy.2025.100050
a: Co3O4; b: Mg0.2Co2.8O4; c: Mg0.4Co2.6O4; d: Mg0.6Co2.4O4; e: Mg0.8Co2.2O4; f: MgCo2O4
a: Co3O4; b: Mg0.2Co2.8O4; c: Mg0.4Co2.6O4; d: Mg0.6Co2.4O4; e: Mg0.8Co2.2O4; f: MgCo2O4
a: Mg0.2Co2.8O4; b: Mg0.4Co2.6O4; c: Mg0.6Co2.4O4; d: Mg0.8Co2.2O4; e: MgCo2O4
a: MgCo2O4; b: MgMn0.2Co1.8O4; c: MgMn0.4Co1.6O4; d: MgMn0.6Co1.4O4; e: MgMn0.8Co1.2O4; f: MgMnCoO4
(a): MgCo2O4; (b): MgMn0.2Co1.8O4; (c): MgMn0.6Co1.4O4; (d): MgMnCoO4
a: MgCo2O4; b: MgMn0.2Co1.8O4; c: MgMn0.4Co1.6O4; d: MgMn0.6Co1.4O4; e: MgMn0.8Co1.2O 4; f: MgMnCoO4
a: MgCo2O4; b: MgMn0.2Co1.8O4; c: MgMn0.4Co1.6O4; d: MgMn0.6Co1.4O4; e: MgMn0.8Co1.2O 4; f: MgMnCoO4
(a): MgMn0.2Co1.8O4; (b): 0.02K/MgMn0.2Co1.8O4
a: MgMn0.2Co1.8O4; b: 0.01K/MgMn0.2Co1.8O4; c: 0.02K/MgMn0.2Co1.8O4; d: 0.03K/MgMn0.2Co1.8O4; e: 0.04K/MgMn0.2Co1.8O4; f: 0.05K/MgMn0.2Co1.8O4
■: MgMn0.2Co1.8O4 (O2); ●:MgMn0.2Co1.8O4(O2+H2O);▲: 0.02K/MgMn0.2Co1.8O4(O2); ▼: 0.02K/MgMn0.2Co1.8O4(O2+H2O)