Citation: JI Jie, LI Hui, WANG Jia-ni, SUO Zhi, XU Ying. Effect of compatibilizer on low-temperature performances of modified asphalts from direct coal liquefaction residue[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 925-933. shu

Effect of compatibilizer on low-temperature performances of modified asphalts from direct coal liquefaction residue

  • Corresponding author: JI Jie, jijie@bucea.edu.cn
  • Received Date: 8 April 2019
    Revised Date: 5 June 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China(51778038), Beijing Natural Science Foundation Committee-Beijing Municipal Education Commission(KZ201910016017), Yangtse Rive Scholar and Innovation Team Development Plan(IRT-17R06), Fundamental Research Business Expenses of Municipal Universities-ZC Major Key Scientific Research Support Projects-ZC05 Scientific Research and Innovation Team Building Plan(X18259)Fundamental Research Business Expenses of Municipal Universities-ZC Major Key Scientific Research Support Projects-ZC05 Scientific Research and Innovation Team Building Plan X18259Yangtse Rive Scholar and Innovation Team Development Plan IRT-17R06Beijing Natural Science Foundation Committee-Beijing Municipal Education Commission KZ201910016017the National Natural Science Foundation of China 51778038

Figures(9)

  • In order to evaluate influence of different compatibilizers on low-temperature performances of direct coal liquefaction residue modified asphalts (DCLR modified asphalt), 3 compatibilizers including silane coupling agent, benzaldehyde and xylene were used. At first, the optimum dosage and mixing mode of the compatibilizers were determined by orthogonal test. Secondly, resistance to low-temperature cracking of the asphalt after adding compatibilizer was evaluated using the Double-Edge-Notched Tension (DENT) test. Finally, dispersion state of DCLR in asphalt were analyzed by scanning electron microscopy and software of Image Pro Plus diagram to quantitatively analyze low-temperature performances of the asphalts after adding compatibilizer. The test results show that addition of compatibilizer is helpful to improve dispersion of DCLR in asphalt and compatibility between them. Thus, the long-term stability of DCLR modified asphalt after adding compatibilizer can be maintained and its low-temperature performances are enhanced. Additionally, the 3 compatibilizers have different effects on low-temperature performances of the DCLR modified asphalt, silane coupling agent is the best, followed by benzaldehyde and xylene.
  • 加载中
    1. [1]

      ELLIOT M A. Chemistry of Coal Utilization (Second Supplementary Volume)[M]. New York:John Wiley and Sons, Inc, 1981.

    2. [2]

      ZHENG L Z, WANG X H, ZHANG T S, ZHENG C H. Research progress in utilizations of coal liquefaction residues[C]//IEEE. 2011 International Conference on Materials for Renewable Energy and Environment. New York: IEEE. 2011: 1627-1630.

    3. [3]

      PATEL P. China and south africa pursue coal liquefaction[J]. MRS Bulletin, 2012,37(3):204-205. doi: 10.1557/mrs.2012.64

    4. [4]

      CN: 201010614927. (LAI Shi-liu, CHEN Xue-lian, SHENG Ying. An ionic liquid extractant used to separate asphaltenes, asphaltenes and heavy oils from direct coal liquefaction residue[P]. CN: 201010614927.

    5. [5]

      ADACHI Y, NAKAMIZ M. Chemical structure of pyridine soluble matter of coal liquefaction residue[J]. J Japan Inst Energy, 1993,72(10):930-934. doi: 10.3775/jie.72.930

    6. [6]

      SUGANO M, IKEMIZU R, MASHIMO K. Effects of the oxidation pretreatment with hydrogen peroxide on the hydrogenolysis reactivity of the coal liquefaction residue[J]. Fuel Process Technol, 2002,77/78(1):67-73.  

    7. [7]

      RATHBONE R F, HOWER J C, DERBYSHIRE F J. The application of fluorescence microscopy to coal-derived characterization[J]. Fuel, 1993,72(8):1177-1185. doi: 10.1016/0016-2361(93)90328-Y

    8. [8]

      WANG Zhai-xia, YANG Jian-li, LIU Zhen-yu. Preliminary evaluation of direct coal liquefaction residue modification effect on road asphalt[J]. J Fuel Chem Technol, 2007,35(1):109-112. doi: 10.3969/j.issn.0253-2409.2007.01.021 

    9. [9]

      JI J, ZHAO Y S, XU S F. Study on properties of the Blends with Direct Coal Liquefaction Residue and Asphalt[C]//Materials Science, Civil Engineering and Architecture Science, Mechanical Engineering and Manufacturing Technology, ICAEMAS 2014. Xi'an, China, 2014. USA: Trans Tech Publication Inc, 2014: 316-321.

    10. [10]

      JI Jie, SHI Yue-feng, SUO Zhi, XU Shi-fa, YANG Song, LI Peng-fei. Comparison on properties of modified asphalt blended with DCLR and TLA[J]. J Fuel Chem Technol, 2015,43(9):1061-1067. doi: 10.3969/j.issn.0253-2409.2015.09.006 

    11. [11]

      JI J, YAO H, YANG X, XU Y, SUO Z, YOU Z P. Performance analysis of direct coal liquefaction residue (DCLR) and Trinidad lake asphalt (TLA) for the purpose of modifying tradition alasphalt[J]. Arabian J Sci Engineer, 2016,41(10):3983-3993. doi: 10.1007/s13369-016-2034-5

    12. [12]

      HE Liang. Research on preparation and properties of direct coal liquefaction residue modified asphalt[D]. Xi'an: Chang'an University, 2013.

    13. [13]

      SU Man-man, ZHANG Hong-liang, ZHANG Yong-ping, ZHANG Zeng-ping. Miscibility and mechniclanical properties of SBS and asphalt blends based on molecular dynamics simulation[J]. J Chang'an Univ (Nat Sci Ed), 2017,37(3):24-32. doi: 10.3969/j.issn.1671-8879.2017.03.004

    14. [14]

      LIU Ke-fei, DENG Lin-fei, ZHENG Jia-yu, JIANG Kang. Compatibility evaluation of waste tire rubber power modified asphalt binder[J]. New Build Mater, 2017,44(5):13-16. doi: 10.3969/j.issn.1001-702X.2017.05.004

    15. [15]

      LI Kuan, PAN Yong-qiang, ZHANG Hui, CHEN Li-feng, ZHANG Jian. Research progress of compatibility of epoxy asphalt for steel deck pvement[J]. Mater Rev, 2018,32(9):1534-1540.  

    16. [16]

      CHEN Jing, SUN Ming, DAI Xiao-min, YAO Yi, LIU Yuan-yuan, HE Min, LÜ Bo, ZHAO Xiang-long, MA Xiao-xun. Asphalt modification with direct coal liquefaction residue based on benzaldehyde crosslinking agent[J]. J Fuel Chem Technol, 2015,43(9):1052-1060. doi: 10.3969/j.issn.0253-2409.2015.09.005 

    17. [17]

      CHAO Wei-dong, LIU Shu-tang. Effect of silane coupling agent on properties of asphalt-rubber(AR)binders[J]. J Build Mater, 2009,12(4):497-500. doi: 10.3969/j.issn.1007-9629.2009.04.026

    18. [18]

      SU Da-gen, ZHANG Jing-feng, HE Juan. Study on the function of emulsified asphalt modified by silance coupling[J]. Guangzhou Chem Ind, 2006(3):32-34. doi: 10.3969/j.issn.1001-9677.2006.03.014

    19. [19]

      FAN Yun-zhu. Exploratory study on properties and application of coal direct liquefaction residue[D]. Shanghai: East China University of Science and Technology, 2011.

    20. [20]

      CHEN Song, PEI Xiao-guang, LIU Rong-bo. Evaluation method of low temperature performance of SBS modified asphalt[J]. Shandong Chem Ind, 2018,47(9):49-50+52. doi: 10.3969/j.issn.1008-021X.2018.09.020

    21. [21]

      COTTERELL B, REDDEL J K. The essential work of plane stress ductile fracture[J]. Inter J Fract, 1977,13(3):267-277.  

    22. [22]

      ANDRIESCU A, HESP S, YOUTCHEFF J S. Essential and Plastic Works of Ductile Fracture in Asphalt Binders[M]. 2004.

    23. [23]

      ZHOU F, MOGAWER W, LI H, ANDRIESCU A, COPELAND A. Evaluation of fatigue tests for characterizing asphalt binders[J]. J Mater Civ Eng, 2013,25(5):610-617. doi: 10.1061/(ASCE)MT.1943-5533.0000625

    24. [24]

      TABATABAEE H, CLOPOTEL C, ARSHADI A. Critical problems with using the asphalt ductility test as a performance index for modified binders[J]. Transportation Research Record:Journal of the Transportation Research Board, 2013(2370):84-91.  

    25. [25]

      PALIUKAITE M, ASSURAS M, SILVA S C, DING H, GOTAME Y, NIE Y, UBAID I, HESP S A M. Implementation of the double-edge-notched tension test for asphalt cement acceptance[J]. Trans Dev Eco, 2017,3(1)6. doi: 10.1007/s40890-017-0034-0

    26. [26]

      PALIUKAITE M, ASSURAS M, HESP S A M. Effect of recycled engine oil bottoms on the ductile failure properties ofstraight and polymer-modified asphalt cements[J]. Constr Build Mater, 2016,126:190-196. doi: 10.1016/j.conbuildmat.2016.08.156

    27. [27]

      SINGH D, GIRIMATH S. Influence of RAP sources and proportions on fracture and low temperature cracking performance of polymer modified binder[J]. Constr Build Mater, 2016,120:10-18. doi: 10.1016/j.conbuildmat.2016.05.094

    28. [28]

      AASHTO TP 113-15, Standard Method of Test for Determination of Asphalt Binder Resistance to Ductile Failure Using Double-Edge-Notched Tension (DENT) Test[S]. Washington, 2015.

  • 加载中
    1. [1]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    2. [2]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    5. [5]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    6. [6]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    15. [15]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    16. [16]

      Xiaoyan Wang Chao Wang Dongmei Dai Yanling Geng Hongtao Gao . Design of Ideological and Political Education for the Experiment on Calcium Content Determination in Calcium Supplements. University Chemistry, 2024, 39(2): 162-167. doi: 10.3866/PKU.DXHX202307074

    17. [17]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    18. [18]

      Tongyu Zheng Teng Li Xiaoyu Han Yupei Chai Kexin Zhao Quan Liu Xiaohui Ji . A DIY pH Detection Agent Using Persimmon Extract for Acid-Base Discoloration Popularization Experiment. University Chemistry, 2024, 39(5): 27-36. doi: 10.3866/PKU.DXHX202309107

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(7)
  • Abstract views(643)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return