Citation: Hou Junjun, Li Lianshan, Huang Jin, Tang Zhiyong. Progress in the Syntheses of Covalent Organic Frameworks and Their Applications in Separation[J]. Chemistry, ;2019, 82(3): 195-201. shu

Progress in the Syntheses of Covalent Organic Frameworks and Their Applications in Separation

Figures(3)

  • Covalent organic frameworks (COFs) are crystalline porous polymers formed by covalent bonding of small organic molecules. Unlike typical linear polymers, COFs offer fine control over their skeletons in two and three dimensions, which enables the synthesis of rigid porous structures with high regularity and tunable chemical and physical properties. The nanoscale channels and voids in COFs provide an ideal environment for molecular storage, release and separation, endowing them great potential in energy adsorption, separation, and catalysis. This article reviews the progress in COFs, including the synthesis strategies, the applications in separation field as well as outlook of their future developments.
  • 加载中
    1. [1]

      X Feng, X Ding, D Jiang. Chem. Soc. Rev., 2012, 41 (18):6010~6022. 

    2. [2]

      N Huang, P Wang, D Jiang. Nat. Rev. Mater., 2016, 1 (10):16068. 

    3. [3]

      J L Segura, M J Mancheno, F Zamora. Chem. Soc. Rev., 2016, 45 (20):5635~5671. 

    4. [4]

      M S Lohse, T Bein. Adv. Funct. Mater., 2018, 28 (33):1705553. 

    5. [5]

      A P Cote, A I Benin, N W Ockwig et al. Science, 2005, 310 (5751):1166~1170. 

    6. [6]

      H Furukawa, O M Yaghi. J. Am. Chem. Soc., 2009, 131 (25):8875~8883. 

    7. [7]

      J F Dienstmaier, D D Medina, M Dogru et al. ACS Nano, 2012, 6 (8):7234~7242. 

    8. [8]

      C Z Guan, D Wang, L J Wan. Chem. Commun., 2012, 48 (24):2943~2945. 

    9. [9]

      S Spitzer, A R Lahrood, K Macknapp et al. Chem. Commun., 2017, 53 (37):5147~5150. 

    10. [10]

      R W Tilford, S J Mugavero, P J Pellechia et al. Adv. Mater., 2008, 20 (14):2741~2746. 

    11. [11]

      G H Bertrand, V K Michaelis, T C Ong et al. PNAS, 2013, 110 (13):4923~4928. 

    12. [12]

      F J Uribe-Romo, J R Hunt, H Furukawa et al. J. Am. Chem. Soc., 2009, 131 (13):4570~4571. 

    13. [13]

      S Wan, F Gándara, A Asano et al. Chem. Mater., 2011, 23 (18):4094~4097. 

    14. [14]

      Y B Zhang, J Su, H Furukawa et al. J. Am. Chem. Soc., 2013, 135 (44):16336~16339. 

    15. [15]

      S Kandambeth, A Mallick, B Lukose et al. J. Am. Chem. Soc., 2012, 134 (48):19524~19527. 

    16. [16]

      S Kandambeth, D B Shinde, M K Panda et al. Angew. Chem. Int. Ed., 2013, 52 (49):13052~13056. 

    17. [17]

      X Chen, M Addicoat, E Jin et al. J. Am. Chem. Soc., 2015, 137 (9):3241~3247. 

    18. [18]

      H S Xu, S Y Ding, W K An et al. J. Am. Chem. Soc., 2016, 138 (36):11489~11492. 

    19. [19]

      P Kuhn, M Antonietti, A Thomas. Angew. Chem. Int. Ed., 2008, 47 (18):3450~3453. 

    20. [20]

      M J Bojdys, J Jeromenok, A Thomas et al. Adv. Mater., 2010, 22 (19):2202~2205. 

    21. [21]

      S Ren, M J Bojdys, R Dawson et al. Adv. Mater., 2012, 24 (17):2357~2361. 

    22. [22]

      X Zhu, C Tian, S M Mahurin et al. J. Am. Chem. Soc., 2012, 134 (25):10478~10484. 

    23. [23]

      F J Uribe-Romo, C J Doonan, H Furukawa et al. J. Am. Chem. Soc., 2011, 133 (30):11478~11481. 

    24. [24]

      G Das, D B Shinde, S Kandambeth et al. Chem. Commun., 2014, 50 (84):12615~12618. 

    25. [25]

      S Dalapati, S Jin, J Gao et al. J. Am. Chem. Soc., 2013, 135 (46):17310~17313. 

    26. [26]

      S B Alahakoon, C M Thompson, A X Nguyen et al. Chem. Commun., 2016, 52 (13):2843~2845. 

    27. [27]

      Q Fang, Z Zhuang, S Gu et al. Nat. Commun., 2014, 5:4503. 

    28. [28]

      Y Zeng, R Zou, Z Luo et al. J. Am. Chem. Soc., 2015, 137 (3):1020~1023. 

    29. [29]

      B Zhang, M Wei, H Mao et al. J. Am. Chem. Soc., 2018, 140 (40):12715~12719. 

    30. [30]

      M G Rabbani, A K Sekizkardes, Z Kahveci et al. Chem. Eur. J., 2013, 19 (10):3324~3328. 

    31. [31]

      Z Li, X Feng, Y Zou et al. Chem. Commun., 2014, 50 (89):13825~13828. 

    32. [32]

      Z Li, Y Zhi, X Feng et al. Chem. Eur. J., 2015, 21 (34):12079~12084. 

    33. [33]

      D Cao, J Lan, W Wang et al. Angew. Chem. Int. Ed., 2009, 48 (26):4730~4733. 

    34. [34]

      Y Li, R T Yang. AIChE J., 2008, 54 (1):269~279. 

    35. [35]

      J Dong, Y Wang, G Liu et al. CrystEngComm., 2017, 19 (33):4899~4904. 

    36. [36]

      M S Lohse, T Stassin, G Naudin et al. Chem. Mater., 2016, 28 (2):626~631. 

    37. [37]

      X Zhu, S An, Y Liu et al. AIChE J., 2017, 63 (8):3470~3478. 

    38. [38]

      S Kandambeth, B P Biswal, H D Chaudhari et al. Adv. Mater., 2017, 29 (2):1603945. 

    39. [39]

      K Dey, M Pal, K C Rout et al. J. Am. Chem. Soc., 2017, 139 (37):13083~13091. 

    40. [40]

      N Huang, L Zhai, H Xu et al. J. Am. Chem. Soc., 2017, 139 (6):2428~2434. 

    41. [41]

      Q Sun, B Aguila, J Perman et al. J. Am. Chem. Soc., 2017, 139 (7):2786~2793. 

    42. [42]

      Z Li, H Li, X Guan et al. J. Am. Chem. Soc., 2017, 139 (49):17771~17774. 

    43. [43]

      H Wang, F Jiao, F Gao et al. Talanta, 2017, 166:133~140. 

  • 加载中
    1. [1]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    2. [2]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    3. [3]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    4. [4]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    5. [5]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    6. [6]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    7. [7]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    8. [8]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    13. [13]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    14. [14]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    15. [15]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

    16. [16]

      Xinyu Zhu Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106

    17. [17]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    18. [18]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    19. [19]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    20. [20]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

Metrics
  • PDF Downloads(12)
  • Abstract views(980)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return