Citation: LI Zuo-peng, SHANG Jian-peng, FU Wei, YANG Xiao-meng, LIU Wei, ZENG Jian-huang, GUO Yong, Feng FENG. In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1083-1089. shu

In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction

  • Corresponding author: SHANG Jian-peng, cejhzeng@scut.edu.cn Feng FENG, feng-feng64@263.net
  • Received Date: 20 May 2019
    Revised Date: 22 July 2019

    Fund Project: the National Natural Science Foundation of China 21073113Natural Science Foundation of Datong 201819Natural Science Foundation of Shanxi 201701D121016The project was supported by the National Natural Science Foundation of China (21073113), Natural Science Foundation of Shanxi (201701D121016) and Natural Science Foundation of Datong (201819)

Figures(6)

  • Developing cost-effective electrocatalysts for oxygen evolution reaction (OER) in basic media is critical to hydrogen production from renewable energy. Herein, in-situ electrodeposited flower-like NiFeOxHy and NiFeOxHy/rGO composite electrocatalysts on Ni foam for OER are reported. The active sites of the flower-like electrocatalysts are increased significantly due to the enhanced NiFeOxHy surface areas and numerous exposed layered edges and edge defects. Reduced graphene oxide (rGO) has been introduced to fabricate NiFeOxHy/rGO composite film, further improving the conductivity and OER performance of the flower-like NiFeOxHy. The optimized NiFeOxHy/rGO exhibits superior OER performance with a Tafel slope of 29.11 mV/decade, an overpotential of 200 mV at 10 mA/cm2 in 1 mol/L KOH and favorable long-term stability.
  • 加载中
    1. [1]

      SHERIF S A, BARBIR F, VEZIROGLU T N. Wind energy and the hydrogen economy-review of the technology[J]. Sol Energy, 2005,78(5):647-660.

    2. [2]

      TRONCOSO E, NEWBOROUGH M. Implementation and control of electrolysers to achieve high penetrations of renewable power[J]. Int J Hydrogen Energy, 2007,32(13):2253-2268. doi: 10.1016/j.ijhydene.2007.02.034

    3. [3]

      WANG J, CUI W, LIU Q, XING Z, ASIRI A M, SUN X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Adv Mater, 2016,28:215-230. doi: 10.1002/adma.201502696

    4. [4]

      DENG X, TVYSUVZ H. Cobalt-oxide-based materials as water oxidation catalyst:Recent progress and challenges[J]. ACS Catal, 2014,4(10):3701-3714. doi: 10.1021/cs500713d

    5. [5]

      SUEN N, HUNG S, QUAN Q, ZHANG N, XU Y, CHEN H M. Electrocatalysis for the oxygen evolution reaction:recent development and future perspectives[J]. Chem Soc Rev, 2016,46:337-365.

    6. [6]

      LEE D U, XU P, CANO Z P, KASHKOOLI A G, PARK M G, CHEN Z. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries[J]. J Mater Chem A, 2016,4:7107-7134. doi: 10.1039/C6TA00173D

    7. [7]

      REIER T, OEZASLAN M, STRASSER P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts:A comparative study of nanoparticles and bulk materials[J]. ACS Catal, 2012,2(8):1765-1772. doi: 10.1021/cs3003098

    8. [8]

      YOUN D H, PARK Y B, KIM J Y, MAGESH G, JANG Y, LEE J S. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation[J]. J Power Sources, 2015,294:437-443. doi: 10.1016/j.jpowsour.2015.06.098

    9. [9]

      CHEN Y, RUI K, ZHU J, DOU S X, SUN W. Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction[J]. Chem Eur J, 2019,25(3):703-713. doi: 10.1002/chem.201802068

    10. [10]

      GONG M AND DAI H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Res, 2015,8(1):23-39.

    11. [11]

      ZHU K, ZHU X, YANG W. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts[J]. Angew Chem Int Ed, 2019,58(5):1252-1265. doi: 10.1002/anie.201802923

    12. [12]

      CHEN J Y, DANG L, LIANG H, BI W, GERKEN J B, JIN S, ALP E E, STAHL S S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation:Detection of Fe4+ by mössbauer spectroscopy[J]. J Am Chem Soc, 2015,137(48):15090-15093. doi: 10.1021/jacs.5b10699

    13. [13]

      AHN H S, BARD A J. Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst:Kinetics of the "fast" iron sites[J]. J Am Chem Soc, 2016,138(1):313-318. doi: 10.1021/jacs.5b10977

    14. [14]

      GÖRLIN M, ARAÚJO J F, SCHMIES H, BERNSMEIER D, DRESP S, GLIECH M, JUSYS Z, CHERNEV P, KRAEHNERT R, DAU H, STRASSER P. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction (OER) electrocatalysts:the role of catalyst support and electrolyte pH[J]. J Am Chem Soc, 2017,139(5):2070-2082. doi: 10.1021/jacs.6b12250

    15. [15]

      ZHOU Q, CHEN Y, ZHAO G, LIN Y, YU Z, XU X, WANG X, LIU H, SUN W, DOU S X. Active site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction[J]. ACS Catal, 2018,8(6):5382-5390. doi: 10.1021/acscatal.8b01332

    16. [16]

      YAN K, LAFLEUR T, CHAI J, JARVIS C. Facile synthesis of thin NiFe-layered double hydroxides nanosheets efficient for oxygen evolution[J]. Electrochem Commun, 2015,62:24-28.  

    17. [17]

      LU X, ZHAO C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat Commun, 2015,66616. doi: 10.1038/ncomms7616

    18. [18]

      MORALES-GUIO C G, LIARDET L, HU X. Oxidatively electrodeposited thin film transition metal (oxy)hydroxides as oxygen evolution catalysts[J]. J Am Chem Soc, 2016,138(28):8946-8957. doi: 10.1021/jacs.6b05196

    19. [19]

      TRZESNIEWSKI B J, DIAZ-MORALES O, VERMAAS D A, LONGO A, BRAS W, KOPER M, SMITH W A. In situ observation of active oxygen species in Fe-Containing Ni-based oxygen evolution catalysts:the effect of pH on electrochemical activity[J]. J Am Chem Soc, 2015,137(48):15112-15121.

    20. [20]

      FRIEBEL D, LOUIE M W, BAJDICH M, SANWALD K E, CAI Y, WISE A M, CHENG M, SOKARAS D, WENG T, ALONSO-MORI R, DAVIS R C, BARGAR J R, NORSKOV J K, NILSSON A, BELL A T. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. J Am Chem Soc, 2015,137(3):1305-1313. doi: 10.1021/ja511559d

    21. [21]

      SHAO Y, WANG J, ENGELHARD M, WANG C, LIN Y. Facile and controllable electrochemical reduction of graphene oxide and its applications[J]. J Mater Chem, 2010,20:743-748. doi: 10.1039/B917975E

    22. [22]

      GUO H, WANG X, QIAN Q, WANG F, XIA X. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009,3(9):2653-2659. doi: 10.1021/nn900227d

    23. [23]

      HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958,80(6):1339-1339. doi: 10.1021/ja01539a017

    24. [24]

      RONG F, ZHAO J, YANG Q, LI C. Nanostructured hybrid NiFeOOH/CNT electrocatalysts for oxygen evolution reaction with low overpotential[J]. RSC Adv, 2016,6:74536-74544. doi: 10.1039/C6RA16450A

    25. [25]

      LIU R, WANG Y, LIU D, ZOU Y, WANG S. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation[J]. Adv Mater, 2017,291701546. doi: 10.1002/adma.201701546

    26. [26]

      ZHANG Y, LU J. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent[J]. Cryst Growth Des, 2008,8(7):2101-2107. doi: 10.1021/cg060880e

  • 加载中
    1. [1]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    2. [2]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    3. [3]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    4. [4]

      Yifan LIUZhan ZHANGRongmei ZHUZiming QIUHuan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008

    5. [5]

      Ze ZhangLei YangJin-Ru LiuHao HuJian-Li MiChao SuBei-Bei XiaoZhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013

    6. [6]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    7. [7]

      Jiahao XieJin LiuBin LiuXin MengZhuang CaiXiaoqin XuCheng WangShijie YouJinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236

    8. [8]

      Yanan ZhouLi ShengLanlan ChenWenhua ZhangJinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588

    9. [9]

      Pingfan ZhangShihuan HongNing SongZhonghui HanFei GeGang DaiHongjun DongChunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073

    10. [10]

      Ming YueYi-Rong WangJia-Yong WengJia-Li ZhangDa-Yu ChiMingjin ShiXiao-Gang HuYifa ChenShun-Li LiYa-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049

    11. [11]

      Peng JiaYunna GuoDongliang ChenXuedong ZhangJingming YaoJianguo LuLiqiang ZhangIn-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624

    12. [12]

      Yuxin ZengYan LuoYao HeKaihang ZhangBinbin ZhuYuanzheng ZhangJunfeng Niu . Photo-assisted electrocatalysis with bimetallic PdCu/TiOx catalysts: Enhancing denitrification and economic viability. Chinese Chemical Letters, 2025, 36(6): 110514-. doi: 10.1016/j.cclet.2024.110514

    13. [13]

      Yanhua PengXin YuTing Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198

    14. [14]

      Zhihao GuJiabo LeHehe WeiZehui SunMahmoud Elsayed HafezWei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849

    15. [15]

      Ling Tang Yan Wan Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345

    16. [16]

      Chi ZhangNing DingYuwei PanLichun FuYing Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    19. [19]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    20. [20]

      Jiayu XuMeng LiBaoxia DongLigang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798

Metrics
  • PDF Downloads(6)
  • Abstract views(729)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return