In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction
- Corresponding author: SHANG Jian-peng, cejhzeng@scut.edu.cn Feng FENG, feng-feng64@263.net
Citation:
LI Zuo-peng, SHANG Jian-peng, FU Wei, YANG Xiao-meng, LIU Wei, ZENG Jian-huang, GUO Yong, Feng FENG. In-situ electrodeposited flower-like NiFeOxHy/rGO on nickel foam for oxygen evolution reaction[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(9): 1083-1089.
SHERIF S A, BARBIR F, VEZIROGLU T N. Wind energy and the hydrogen economy-review of the technology[J]. Sol Energy, 2005,78(5):647-660.
TRONCOSO E, NEWBOROUGH M. Implementation and control of electrolysers to achieve high penetrations of renewable power[J]. Int J Hydrogen Energy, 2007,32(13):2253-2268. doi: 10.1016/j.ijhydene.2007.02.034
WANG J, CUI W, LIU Q, XING Z, ASIRI A M, SUN X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Adv Mater, 2016,28:215-230. doi: 10.1002/adma.201502696
DENG X, TVYSUVZ H. Cobalt-oxide-based materials as water oxidation catalyst:Recent progress and challenges[J]. ACS Catal, 2014,4(10):3701-3714. doi: 10.1021/cs500713d
SUEN N, HUNG S, QUAN Q, ZHANG N, XU Y, CHEN H M. Electrocatalysis for the oxygen evolution reaction:recent development and future perspectives[J]. Chem Soc Rev, 2016,46:337-365.
LEE D U, XU P, CANO Z P, KASHKOOLI A G, PARK M G, CHEN Z. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries[J]. J Mater Chem A, 2016,4:7107-7134. doi: 10.1039/C6TA00173D
REIER T, OEZASLAN M, STRASSER P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts:A comparative study of nanoparticles and bulk materials[J]. ACS Catal, 2012,2(8):1765-1772. doi: 10.1021/cs3003098
YOUN D H, PARK Y B, KIM J Y, MAGESH G, JANG Y, LEE J S. One-pot synthesis of NiFe layered double hydroxide/reduced graphene oxide composite as an efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation[J]. J Power Sources, 2015,294:437-443. doi: 10.1016/j.jpowsour.2015.06.098
CHEN Y, RUI K, ZHU J, DOU S X, SUN W. Recent progress on nickel-based oxide/(oxy)hydroxide electrocatalysts for the oxygen evolution reaction[J]. Chem Eur J, 2019,25(3):703-713. doi: 10.1002/chem.201802068
GONG M AND DAI H. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Res, 2015,8(1):23-39.
ZHU K, ZHU X, YANG W. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts[J]. Angew Chem Int Ed, 2019,58(5):1252-1265. doi: 10.1002/anie.201802923
CHEN J Y, DANG L, LIANG H, BI W, GERKEN J B, JIN S, ALP E E, STAHL S S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation:Detection of Fe4+ by mössbauer spectroscopy[J]. J Am Chem Soc, 2015,137(48):15090-15093. doi: 10.1021/jacs.5b10699
AHN H S, BARD A J. Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst:Kinetics of the "fast" iron sites[J]. J Am Chem Soc, 2016,138(1):313-318. doi: 10.1021/jacs.5b10977
GÖRLIN M, ARAÚJO J F, SCHMIES H, BERNSMEIER D, DRESP S, GLIECH M, JUSYS Z, CHERNEV P, KRAEHNERT R, DAU H, STRASSER P. Tracking catalyst redox states and reaction dynamics in Ni-Fe oxyhydroxide oxygen evolution reaction (OER) electrocatalysts:the role of catalyst support and electrolyte pH[J]. J Am Chem Soc, 2017,139(5):2070-2082. doi: 10.1021/jacs.6b12250
ZHOU Q, CHEN Y, ZHAO G, LIN Y, YU Z, XU X, WANG X, LIU H, SUN W, DOU S X. Active site-enriched iron-doped nickel/cobalt hydroxide nanosheets for enhanced oxygen evolution reaction[J]. ACS Catal, 2018,8(6):5382-5390. doi: 10.1021/acscatal.8b01332
YAN K, LAFLEUR T, CHAI J, JARVIS C. Facile synthesis of thin NiFe-layered double hydroxides nanosheets efficient for oxygen evolution[J]. Electrochem Commun, 2015,62:24-28.
LU X, ZHAO C. Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities[J]. Nat Commun, 2015,66616. doi: 10.1038/ncomms7616
MORALES-GUIO C G, LIARDET L, HU X. Oxidatively electrodeposited thin film transition metal (oxy)hydroxides as oxygen evolution catalysts[J]. J Am Chem Soc, 2016,138(28):8946-8957. doi: 10.1021/jacs.6b05196
TRZESNIEWSKI B J, DIAZ-MORALES O, VERMAAS D A, LONGO A, BRAS W, KOPER M, SMITH W A. In situ observation of active oxygen species in Fe-Containing Ni-based oxygen evolution catalysts:the effect of pH on electrochemical activity[J]. J Am Chem Soc, 2015,137(48):15112-15121.
FRIEBEL D, LOUIE M W, BAJDICH M, SANWALD K E, CAI Y, WISE A M, CHENG M, SOKARAS D, WENG T, ALONSO-MORI R, DAVIS R C, BARGAR J R, NORSKOV J K, NILSSON A, BELL A T. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting[J]. J Am Chem Soc, 2015,137(3):1305-1313. doi: 10.1021/ja511559d
SHAO Y, WANG J, ENGELHARD M, WANG C, LIN Y. Facile and controllable electrochemical reduction of graphene oxide and its applications[J]. J Mater Chem, 2010,20:743-748. doi: 10.1039/B917975E
GUO H, WANG X, QIAN Q, WANG F, XIA X. A green approach to the synthesis of graphene nanosheets[J]. ACS Nano, 2009,3(9):2653-2659. doi: 10.1021/nn900227d
HUMMERS W S, OFFEMAN R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958,80(6):1339-1339. doi: 10.1021/ja01539a017
RONG F, ZHAO J, YANG Q, LI C. Nanostructured hybrid NiFeOOH/CNT electrocatalysts for oxygen evolution reaction with low overpotential[J]. RSC Adv, 2016,6:74536-74544. doi: 10.1039/C6RA16450A
LIU R, WANG Y, LIU D, ZOU Y, WANG S. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation[J]. Adv Mater, 2017,291701546. doi: 10.1002/adma.201701546
ZHANG Y, LU J. A mild and efficient biomimetic synthesis of rodlike hydroxyapatite particles with a high aspect ratio using polyvinylpyrrolidone as capping agent[J]. Cryst Growth Des, 2008,8(7):2101-2107. doi: 10.1021/cg060880e
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
Hao WANG , Kun TANG , Jiangyang SHAO , Kezhi WANG , Yuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Yifan LIU , Zhan ZHANG , Rongmei ZHU , Ziming QIU , Huan PANG . A three-dimensional flower-like Cu-based composite and its low-temperature calcination derivatives for efficient oxygen evolution reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 979-990. doi: 10.11862/CJIC.20240008
Ze Zhang , Lei Yang , Jin-Ru Liu , Hao Hu , Jian-Li Mi , Chao Su , Bei-Bei Xiao , Zhi-Min Ao . Improved oxygen electrocatalysis at FeN4 and CoN4 sites via construction of axial coordination. Chinese Chemical Letters, 2025, 36(2): 110013-. doi: 10.1016/j.cclet.2024.110013
Ran HUO , Zhaohui ZHANG , Xi SU , Long CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195
Jiahao Xie , Jin Liu , Bin Liu , Xin Meng , Zhuang Cai , Xiaoqin Xu , Cheng Wang , Shijie You , Jinlong Zou . Yolk shell-structured pyrite-type cobalt sulfide grafted by nitrogen-doped carbon-needles with enhanced electrical conductivity for oxygen electrocatalysis. Chinese Chemical Letters, 2024, 35(7): 109236-. doi: 10.1016/j.cclet.2023.109236
Yanan Zhou , Li Sheng , Lanlan Chen , Wenhua Zhang , Jinlong Yang . Axial coordinated iron-nitrogen-carbon as efficient electrocatalysts for hydrogen evolution and oxygen redox reactions. Chinese Chemical Letters, 2025, 36(1): 109588-. doi: 10.1016/j.cclet.2024.109588
Pingfan Zhang , Shihuan Hong , Ning Song , Zhonghui Han , Fei Ge , Gang Dai , Hongjun Dong , Chunmei Li . Alloy as advanced catalysts for electrocatalysis: From materials design to applications. Chinese Chemical Letters, 2024, 35(6): 109073-. doi: 10.1016/j.cclet.2023.109073
Ming Yue , Yi-Rong Wang , Jia-Yong Weng , Jia-Li Zhang , Da-Yu Chi , Mingjin Shi , Xiao-Gang Hu , Yifa Chen , Shun-Li Li , Ya-Qian Lan . Multi-metal porous crystalline materials for electrocatalysis applications. Chinese Chemical Letters, 2025, 36(6): 110049-. doi: 10.1016/j.cclet.2024.110049
Peng Jia , Yunna Guo , Dongliang Chen , Xuedong Zhang , Jingming Yao , Jianguo Lu , Liqiang Zhang . In-situ imaging electrocatalysis in a solid-state Li-O2 battery with CuSe nanosheets as air cathode. Chinese Chemical Letters, 2024, 35(5): 108624-. doi: 10.1016/j.cclet.2023.108624
Yuxin Zeng , Yan Luo , Yao He , Kaihang Zhang , Binbin Zhu , Yuanzheng Zhang , Junfeng Niu . Photo-assisted electrocatalysis with bimetallic PdCu/TiOx catalysts: Enhancing denitrification and economic viability. Chinese Chemical Letters, 2025, 36(6): 110514-. doi: 10.1016/j.cclet.2024.110514
Yanhua Peng , Xin Yu , Ting Wang . Adaptive nanoconfined Fenton-like reactions: Tailoring carbon pathways for sustainable water treatment and energy harvesting. Chinese Chemical Letters, 2024, 35(12): 110198-. doi: 10.1016/j.cclet.2024.110198
Zhihao Gu , Jiabo Le , Hehe Wei , Zehui Sun , Mahmoud Elsayed Hafez , Wei Ma . Unveiling the intrinsic properties of single NiZnFeOx entity for promoting electrocatalytic oxygen evolution. Chinese Chemical Letters, 2024, 35(4): 108849-. doi: 10.1016/j.cclet.2023.108849
Ling Tang , Yan Wan , Yangming Lin . Lowering the kinetic barrier via enhancing electrophilicity of surface oxygen to boost acidic oxygen evolution reaction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100345-100345. doi: 10.1016/j.cjsc.2024.100345
Chi Zhang , Ning Ding , Yuwei Pan , Lichun Fu , Ying Zhang . The degradation pathways of contaminants by reactive oxygen species generated in the Fenton/Fenton-like systems. Chinese Chemical Letters, 2024, 35(10): 109579-. doi: 10.1016/j.cclet.2024.109579
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
Jing Cao , Dezheng Zhang , Bianqing Ren , Ping Song , Weilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863
Lanfang Wang , Jiangnan Lv , Yujia Li , Yanqing Hao , Wenjiao Liu , Hui Zhang , Xiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597
Jiayu Xu , Meng Li , Baoxia Dong , Ligang Feng . Fully fluorinated hybrid zeolite imidazole/Prussian blue analogs with combined advantages for efficient oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(6): 108798-. doi: 10.1016/j.cclet.2023.108798
(a): wide-scan; (b) Ni 2p; (c): Fe 2p; (d): O 1s