Citation: GAO Lan-jun, WANG Fu-mei, WU Han-ming, PAN Yi-jun, SHEN Bo-xiong. Synthesis of mesoprous materials with Ce-Co/KIT-6 and its mercury removal performance[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 1017-1024. shu

Synthesis of mesoprous materials with Ce-Co/KIT-6 and its mercury removal performance

Figures(11)

  • The oxidation activity of elemental mercury (Hg0) by transition metal modified KIT-6 was investigated using a simulated element mercury (Hg0) adsorption reactor. The physical and chemical propertied of the catalysts were characterized by scanning electron microscope (SEM), N2 adsorption-desorption (BET), Fourier Transform Infrared spectroscopy (FT-IR) Analysis, H2-Temperature programmed reduction (H2-TPR), thermogravimetric analysis (TGA). The results show that Ce-Co/KIT-6 surface area and total pore volume of the catalysts decrease after the modification. However, the pore structure and distribution after modification have little variation. The mean pore size and BET surface area of mesoporous Ce-Co/KIT-6 are 4.6 nm and 495.2 m2/g, respectively. The Ce-Co/KIT-6 shows a high Hg0 adsorption efficiency without O2, the removal efficiency of Hg0 is about 50.67%; moreover, it has a high Hg0 removal efficiency of O2 above 95% for 250 ℃, the presence of O2 greatly contributes to mercury removal capacity of the catalyst. Oxygen enters the metal structure through changes in the valence state of Ce-Co and reacts with mercury, which may be the main mechanism of this process.
  • 加载中
    1. [1]

      LI P, FENG X B, QIU G L, SHANG L H, LI ZG. Mercury pollution in Asia: A review of the contaminated sites[J]. J Hazrad Mater, 2009,168(2/3):591-601.  

    2. [2]

      PACYNA EG, PACYN JM, SUNDSETH K, MUNTHE J, KINDBOM K. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020[J]. Atmospheric Environment, 2010,44(20):2487-2499. doi: 10.1016/j.atmosenv.2009.06.009

    3. [3]

      ZHENG Liu-gen, LIU Gui-jian, Ql Cui-cui, CHEN Yi-wei, ZHANG Ying. Study on environment geochemistry of mercury in Chinese coals[J]. J Univer Sci Technol China, 2007,37(8):953-963.  

    4. [4]

      SLEMR F, SCHUSTER G, SEILER W. Distribution, speciation and budget of atmospheric mercury[J]. J Atmospheric Chem, 1985,3(4):407-434. doi: 10.1007/BF00053870

    5. [5]

      QU Z, YAN N, LIU P, JIA J, YANG S. The role of iodine monochlorid, for the oxidation of elemental mercury[J]. J Hazardous Materials, 2010,183(1/3):132-137.  

    6. [6]

      HE C, SHEN B, CHEN J, CAI J. Adsorption and oxidation of elemental mercury over Ce-Mnx/Ti-PILCs[J]. Environ Sci Technol, 2014,48(14):7891-7898. doi: 10.1021/es5007719

    7. [7]

      ZHANG H R, WU H, LIU H, WANG M, YANG H. Performance and kinetics of mercury adsorption over Taixi activated coke[J]. CIESC Journal, 2013,64(3):1076-1083.  

    8. [8]

      LI G, SHEN B, LI Y, ZHAO B, WANG F, HE C. Removal of element mercury by medicine residue derived biocharsin presence of various gas compositions[J]. J Hazardous Material, 2015,298(15):162-169.  

    9. [9]

      SELVARAJ M, SINHAP K, LEE K, AHN I, PANDURANGAN A, LEE T G. Synthesis and characterization of Mn-MCM-41 and Zr-Mn-MCM-41[J]. Microporous Mesoporous Mater, 2005,78:139-149. doi: 10.1016/j.micromeso.2004.10.004

    10. [10]

      O'SHEA V, ALVAREZ-GALVAN M C, FIERRO J L G, ARIAS P L. Influence of feed composition on the activity of Mn and PdMn/Al2O3 catalysts for combustion of formaldehyde/methanol[J]. Appl Catal B, 2005,57(3):191-199. doi: 10.1016/j.apcatb.2004.11.001

    11. [11]

      XIE Xiao-wei, LI Yong, LIU Zhi-quan, MASATAKE H, SHEN Wen-jie. Low-temperature oxidation of CO catalysed by Co3O4 nanorods[J]. Nature, 2009,458(7239):746-749. doi: 10.1038/nature07877

    12. [12]

      SCHUNK B S A, DEMUTH D G, SCHULZDOBRIK B, UNGER K K. Microporous Mesoporous Mater. 2005, 78, 139.

    13. [13]

      KLEITZ F, CHOI S, RYOO R. Cubic Ia 3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbannanorods and carbon nanotubes[J]. Korean J Chem Eng, 2009,26(5):2136-2137.  

    14. [14]

      JERMY B R, KIM S Y, BINEESH K V, SELVARAJ M, PARK D W. Direct incorporation of vanadium into three-dimensional KIT-6:1. Optimization of synthesis conditions[J]. Korean J Chem Eng, 2009,90:55-63.  

    15. [15]

      LAHA S C, RYOO R. Synthesis of thermally stable mesoporous cerium oxide with nanocrystalline frameworks using mesoporous silica templates[J]. Chem Soc, 2007,129(21):6698-6699. doi: 10.1021/ja070908q

    16. [16]

      LEE D, IHM S, LEE K. Mesostructure control using a titania-coated silica nanosphere framwork with extremely high thermal stability[J]. Korea J Chem Eng, 2009,26(5):1235-1240. doi: 10.1007/s11814-009-0199-2

    17. [17]

      DING Z, LU G Q. Greenfeild. Role of the crystalltie phase of TiO2 in heterogeneous photocatalysis for phenol oxidation water[J]. Phys Chem B, 2000,104:4815-4821. doi: 10.1021/jp993819b

    18. [18]

      SONI K, RANA B S, SINHA A K, BHAUMIK A, NANDI M. 3-D ordered mesoporous KIT-6 support for effiective hydrodesulfurization catalysts[J]. Appl Catal B: Environ, 2009,90:55-63. doi: 10.1016/j.apcatb.2009.02.010

    19. [19]

      YEE K K, REIMER N, LIU J, CHENG S Y, YIU S M. Effective mercury sorption by thiol-laced metal-organic frameworks: in strong acid and the vapor phase[J]. J Am Chem Soc, 2013,135(21):7795-7798. doi: 10.1021/ja400212k

    20. [20]

      LEVI G, SENNECA O, CAUSÀ M, SALATINO P, LACOVIG P, LIZZIT S. Probing the chemical nature of surface oxides during coal char oxidation by high-resolution XPS[J]. Carbon, 2015,90:181-196. doi: 10.1016/j.carbon.2015.04.003

    21. [21]

      ETTIREDDY P R, ETTIREDDY N, MAMEDOV S, BOOLCHAND P, SMIRNIOTIS P G. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3[J]. Appl Catal B: Environmental, 2007,76(1/2):123-134.  

    22. [22]

      HAYKIRI-ACMA H, YAMAN S. Synergy in devolatilization characteristics of lignite and hazelnut shell during co-pyrolysis[J]. Fuel, 2007,86(3):373-380. doi: 10.1016/j.fuel.2006.07.005

    23. [23]

      KAMATA H, UENOSI , NAITOT , YUKIMURA A. Mercury oxidation over the V2O5(WO3)/TiO2 commercial SCR catalyst[J]. Ind Eng Chem Res, 2008,47(21):8136-8141. doi: 10.1021/ie800363g

    24. [24]

      YANG J, YANG Q, SUN J, LIU Q C, ZHAO D, GAO W, LIU L. Effects of mercury oxidation on V2O5-WO3/TiO2 catalyst properties in NH3-SCR process[J]. Catal Commun, 2015,59:78-82. doi: 10.1016/j.catcom.2014.09.049

    25. [25]

      HONG H J, HAM S W, KIM M H, LEE S M, LEE J B. Characteristics of commercial selective catalytic reduction catalyst for the oxidation of gaseous elemental mercury with respect to reaction conditions[J]. Korean J Chem Eng, 2010,27(4):1117-1122. doi: 10.1007/s11814-010-0175-x

    26. [26]

      KONG F, QIU J, HAO L, RAN Z, ZENG H. Effect of NO/SO2 on elemental mercury adsorption by nano-Fe2O3[J]. Proceedings of the CSEE, 2010,30(35):43-48.  

    27. [27]

      LIU H, ZHANG H, YANG H. Photocatalytic removal of nitric oxide by multi-walled carbon nanotubes-supported TiO2[J]. Chin J Catal, 2014,35(1):66-77. doi: 10.1016/S1872-2067(12)60705-0

    28. [28]

      HRDLICKA J A, SEAMES W S, MANN M D, MUGGLI D S, HORABIK C A. Mercury oxidation in flue gas using gold and palladium catalysts on fabric filters[J]. Environ Sci Technol, 2008,42(17):6677-82. doi: 10.1021/es8001844

    29. [29]

      CAO Y, CHENG C M, CHEN C W, LIU M, WANG C, PAN W P. Abatement of mercury emissions in the coal combustion process equipped with a fabric filter baghouse[J]. Fuel, 2008,87(15/16):3322-3330.  

    30. [30]

      HENDERSON MICHAEL A. An HREELS and TPD study of water on TiO2[J]. Surface Science, 1996,355(1):151-166.  

  • 加载中
    1. [1]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    2. [2]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    3. [3]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    4. [4]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    5. [5]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    6. [6]

      . . University Chemistry, 2024, 39(6): 0-0.

    7. [7]

      . Cover and Table of Contents for Vol.41 No. 6. Acta Physico-Chimica Sinica, 2025, 41(6): -.

    8. [8]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    9. [9]

      Pan LiuYanming SunAlberto J. Fernández-CarriónBowen ZhangHui FuLunhua HeXing MingCongling YinXiaojun Kuang . Bismuth-based halide double perovskite Cs2KBiCl6: Disorder and luminescence. Chinese Chemical Letters, 2024, 35(5): 108641-. doi: 10.1016/j.cclet.2023.108641

    10. [10]

      Zhen LiuZhi-Yuan RenChen YangXiangyi ShaoLi ChenXin Li . Asymmetric alkenylation reaction of benzoxazinones with diarylethylenes catalyzed by B(C6F5)3/chiral phosphoric acid. Chinese Chemical Letters, 2024, 35(5): 108939-. doi: 10.1016/j.cclet.2023.108939

    11. [11]

      Ruizhi Yang Xia Li Weiping Guo Zixuan Chen Hongwei Ming Zhong-Zhen Luo Zhigang Zou . New thermoelectric semiconductors Pb5Sb12+xBi6-xSe32 with ultralow thermal conductivity. Chinese Journal of Structural Chemistry, 2024, 43(3): 100268-100268. doi: 10.1016/j.cjsc.2024.100268

    12. [12]

      Xianghe KongXiaoli LiaoZhenkun HuangLei MeiHongqing WangKongqiu HuWeiqun Shi . Designed assembly of heterometallic cluster organic frameworks based on Th6 cluster. Chinese Chemical Letters, 2024, 35(11): 109642-. doi: 10.1016/j.cclet.2024.109642

    13. [13]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    14. [14]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    15. [15]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Jiying Liu Zehua Li Wenjing Zhang Donghui Wei . Molecular Orbital and Nucleus-Independent Chemical Shift Calculations for C6H6 and B12H122-: A Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 186-192. doi: 10.12461/PKU.DXHX202406085

    18. [18]

      Qiang ZHAOZhinan GUOShuying LIJunli WANGZuopeng LIZhifang JIAKewei WANGYong GUO . Cu2O/Bi2MoO6 Z-type heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 885-894. doi: 10.11862/CJIC.20230435

    19. [19]

      Lu LIUHuijie WANGHaitong WANGYing LI . Crystal structure of a two-dimensional Cd(Ⅱ) complex and its fluorescence recognition of p-nitrophenol, tetracycline, 2, 6-dichloro-4-nitroaniline. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1180-1188. doi: 10.11862/CJIC.20230489

    20. [20]

      Meijuan ChenLiyun ZhaoXianjin ShiWei WangYu HuangLijuan FuLijun Ma . Synthesis of carbon quantum dots decorating Bi2MoO6 microspherical heterostructure and its efficient photocatalytic degradation of antibiotic norfloxacin. Chinese Chemical Letters, 2024, 35(8): 109336-. doi: 10.1016/j.cclet.2023.109336

Metrics
  • PDF Downloads(1)
  • Abstract views(3146)
  • HTML views(999)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return