Citation: ZHUANG Xiu-zheng, ZHAN Hao, HUANG Yan-qin, SONG Yan-pei, YIN Xiu-li, WU Chuang-zhi. Influence of hydrothermal upgrading on the fuel characteristics and combustion behavior of herb wastes[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 940-949. shu

Influence of hydrothermal upgrading on the fuel characteristics and combustion behavior of herb wastes

  • Corresponding author: YIN Xiu-li, xlyin@ms.giec.ac.cn
  • Received Date: 6 February 2018
    Revised Date: 14 June 2018

    Fund Project: the National Key R & D Project 2016YFE0203300The project was supported by the National Key R & D Project (2016YFE0203300), the Guangdong Natural Science Foundation (2017B030308002) and the STS Project of Chinese Academy of Sciencethe Guangdong Natural Science Foundation 2017B030308002

Figures(8)

  • Based on two kinds of biowastes (penicillin mycelia waste, PMW; herbal tea waste, HTW), the difference of biowastes derived from various sources and their fuel characteristics and combustion behavior after hydrothermal upgrading were investigated with the assistance of XPS, TGA and FTIR analyses. The results show that HTW mainly contains lignocelluloses, while PMW mostly consists of protein and polysaccharides. Although the specific conversion paths of various components are slightly different during hydrothermal process, both the higher heating values (HHV) of biowastes are improved (HTW:from 19.4 to 26.2 MJ/kg; PMW:from 19.1 to 29.3 MJ/kg); meanwhile, the coalification degree of biowastes increases with the growing temperature, even reaching the degree of bituminite at 300℃. In addition, the variation in carbon content and structure reflects that the reaction of devolatilization and aromatization during hydrothermal process can improve not only the fuel characteristics but also the combustion behavior.
  • 加载中
    1. [1]

      XU Guang-wen, JI Wen-feng, LIU Zhou-en, WAN Yin-hua, ZHANG Xiao-yong. Necessity and technical route of value-added utilization of biomass proces residue in light industry[J]. Chin J Process Eng, 2009,9(3):618-624.  

    2. [2]

      ZENG X, SHAO R Y, WANG F, DONG P W, YU J, XU G W. Industrial demonstration plant for the gasification of herb residue by fluidized bed two-stage process[J]. Bioresour Technol, 2016,206:93-98. doi: 10.1016/j.biortech.2016.01.075

    3. [3]

      ZHAO Hao, LIN Jun-heng, HUANG Yan-qin, YIN Xiu-li, LIU Hua-cai, YUAN Hong-you, WU Chuang-zhi. Evolution of nitrogen functionalities and their relation to NOx precursors during pyrolysis of antibiotic mycelia wastes[J]. J Fuel Chem Technol, 2017,45(10):1219-1229. doi: 10.3969/j.issn.0253-2409.2017.10.009 

    4. [4]

      ZHAO Hao, YIN Xiu-li, HUANG Yan-qin, ZHANG Xiao-hong, YUAN Hong-you, XIE Jian-jun, WU Chuang-zhi. Characteristics of NOx precursors and their formation mechanism during pyrolysis of herb residues[J]. J Fuel Chem Technol, 2017,45(3):279-288.  

    5. [5]

      ZHANG Guang-yi, MA Da-zhao, PENG Cui-na, XU Guang-wen. Hydrothermal treatment of antibiotic mecelial dregs for solid bio-fuel preperation[J]. J Chem Ind Eng, 2013,64(10):3741-3749.  

    6. [6]

      ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Research on clean solid fuel derived from sludge employing hydrothermal treatment[J]. Chem Ind Eng Prog, 2018,37(1):311-318.  

    7. [7]

      ZHUANG X Z, HUANG Y Q, LIU H C, YUAN H Y, YIN X L, WU C Z. Relationship between physicochemical properties and dewaterability of hydrothermal sludge derived from different source[J]. J Environ Sci, 2018,69:261-270. doi: 10.1016/j.jes.2017.10.021

    8. [8]

      ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Optimization of hydrothermal process for solid fuel derived from sewage sludge by response surface methodology[J]. Adv New Renew Energy, 2017,5(5):325-332.  

    9. [9]

      ZHAO P T, SHEN Y F, GE S F, CHEN Z Q, YOSHIKAWA K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Appl Energy, 2014,131:345-367. doi: 10.1016/j.apenergy.2014.06.038

    10. [10]

      MA D C, ZHANG G Y, ZHAO P T, AREEPRASERT C, SHEN Y F, YOSHIKAWA K, XU G W. Hydrothermal treatment of antibiotic mycelial dreg:More understanding from fuel characteristics[J]. Chem Eng J, 2015,273:147-155. doi: 10.1016/j.cej.2015.01.041

    11. [11]

      GAO Y, WANG X H, WANG J, LI X P, CHENG J J, YANG H P, CHEN H P. Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth[J]. Energy, 2013,58:376-383. doi: 10.1016/j.energy.2013.06.023

    12. [12]

      HE C, ZHAO J, YANG Y H, WANG J Y. Multiscale characteristics dynamics of hydrochar from hydrothermal conversion of sewage sludge under sub-and near-critical water[J]. Bioresour Technol, 2016,211:486-493. doi: 10.1016/j.biortech.2016.03.110

    13. [13]

      ZHUANG X Z, HUANG Y Q, SONG Y P, ZHAN H, YIN X L, WU C Z. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresour Technol, 2017,245:463-470. doi: 10.1016/j.biortech.2017.08.195

    14. [14]

      BALAT M. Mechanisms of thermochemical biomass conversion processes[J]. Energy Source Part A, 2008,30(7):620-635. doi: 10.1080/15567030600817258

    15. [15]

      AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable Sustainable Energy Rev, 2011,15(3):1615-1624. doi: 10.1016/j.rser.2010.11.054

    16. [16]

      CHANGI S M, FAETH J L, MO N, SAVAGE P E. Hydrothermal reactions of biomolecules relevant for microalgae liquefaction[J]. Ind Eng Chem Res, 2015,54(47):11733-11758. doi: 10.1021/acs.iecr.5b02771

    17. [17]

      SMITH A M, SINGH S, ROSS A B. Fate of inorganic material during hydrothermal carbonisation of biomass:Influence of feedstock on combustion behaviour of hydrochar[J]. Fuel, 2016,169:135-145. doi: 10.1016/j.fuel.2015.12.006

    18. [18]

      HE C, WANG K, GIANNIS A, YANG Y H, WANG J Y. Products evolution during hydrothermal conversion of dewatered sewage sludge in sub-and near-critical water:Effects of reaction conditions and calcium oxide additive[J]. Int J Hydrogen Energy, 2015,40(17):5776-5787. doi: 10.1016/j.ijhydene.2015.03.006

    19. [19]

      SABIO E, ALVAREZ-MURILLO A, ROMAN S, LEDESMA B. Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization:Influence of the processing variables[J]. Waste Manage, 2016,47:122-132. doi: 10.1016/j.wasman.2015.04.016

    20. [20]

      MURSITO A T, HIRAJIMA T, SASAKI K. Upgrading and dewatering of raw tropical peat by hydrothermal treatment[J]. Fuel, 2010,89(3):635-641. doi: 10.1016/j.fuel.2009.07.004

    21. [21]

      HE C, GIANNIS A, WANG J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization:Hydrochar fuel characteristics and combustion behavior[J]. Appl Energy, 2013,111:257-266. doi: 10.1016/j.apenergy.2013.04.084

    22. [22]

      HE C, WANG K, YANG Y H, WANG J Y. Utilization of sewage-sludge-derived hydrochars toward efficient cocombustion with different-rank coals:Effects of subcritical water conversion and blending scenarios[J]. Energy Fuels, 2014,28(9):6140-6150. doi: 10.1021/ef501386g

    23. [23]

      PENG C, ZHAI Y B, ZHU Y, XU B B, WANG T F, LI C T, ZENG G M. Production of char from sewage sludge employing hydrothermal carbonization:Char properties, combustion behavior and thermal characteristics[J]. Fuel, 2016,176:110-118. doi: 10.1016/j.fuel.2016.02.068

  • 加载中
    1. [1]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    2. [2]

      Xin XIONGQian CHENQuan XIE . First principles study of the photoelectric properties and magnetism of La and Yb doped AlN. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1519-1527. doi: 10.11862/CJIC.20240064

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    5. [5]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    6. [6]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    7. [7]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    8. [8]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Jiandong Liu Zhijia Zhang Mikhail Kamenskii Filipp Volkov Svetlana Eliseeva Jianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100011-. doi: 10.3866/PKU.WHXB202308048

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    14. [14]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    15. [15]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    16. [16]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    17. [17]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    18. [18]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    19. [19]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    20. [20]

      Qiang Zhou Pingping Zhu Wei Shao Wanqun Hu Xuan Lei Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064

Metrics
  • PDF Downloads(8)
  • Abstract views(529)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return