Citation: Fadhil Mustafa H., Ammar Saad H., Abdul Jabbar Marwa F.. Microwave-assisted catalytic oxidative desulfurization of gasoil fuel using synthesized CuO-ZnO nanocomposites[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1075-1082. shu

Microwave-assisted catalytic oxidative desulfurization of gasoil fuel using synthesized CuO-ZnO nanocomposites

Figures(8)

  • Recently, organosulfur removal from liquid petroleum fuels is very significant aspect of environment protecting and fuel cell requests. Therefore, improved approaches to remove sulfur are still essential. In the present work, a simple catalytic oxidative desulfurization (CODS) system for Iraqi gasoil fraction has been successfully developed using CuO-ZnO nanocomposites as catalysts, and H2O2 as oxidant under microwave irradiation. The main reaction parameters influencing sulfur conversion including microwave power, irradiation time, catalyst dosage and H2O2 to gasoil volume ratio have been investigated. The CuO-ZnO nanocomposites was synthesized with different weight ratios and characterized by XRD, FE-SEM, AFM and BET surface area methods. The results reveal that, high sulfur conversion (93%) has been achieved under suitable conditions of microwave CODS as follows:microwave power of 540 W, irradiation time of 15 min, catalyst dosage of 8 g/L (0.4 g), and H2O2:gasoil volume ratio of 0.3. The catalyst reusability shows that the synthesized catalyst can be reused five times without an important loss in its activity.
  • 加载中
    1. [1]

      ZHU W, LI H, JIANG X, YAN Y, LU J, HE L, XIA J. Commercially available molybdic compound-catalyzed ultra-deep desulfurization of fuels in ionic liquids[J]. Green Chem, 2008,10(6):641-646. doi: 10.1039/b801185k

    2. [2]

      CHEN X, SONG D, ASUMANA C, YU G. Deep oxidative desulfurization of diesel fuels by Lewis acidic ionic liquids based on 1-n-butyl-3-methylimidazolium metal chloride[J]. J Mol Catal A:Chem, 2012,359:8-13. doi: 10.1016/j.molcata.2012.03.014

    3. [3]

      SEEBERGER A, JESS A. Desulfurization of diesel oil by selective oxidation and extraction of sulfur compounds by ionic liquids-a contribution to a competitive process design[J]. Green Chem, 2010,12:602-608. doi: 10.1039/b918724c

    4. [4]

      EβER J, WASSERSCHEID P, JESS A. Deep desulfurization of oil by extraction with ionic liquids[J]. Green Chem, 2004,6:316-322. doi: 10.1039/B407028C

    5. [5]

      AGARWAL P, SHARMA D K. Comparative studies on the bio-desulfurization of crude oil with other desulfurization techniques and deep desulfurization through integrated processes[J]. Energy Fuels, 2010,24(1):518-524. doi: 10.1021/ef900876j

    6. [6]

      LIU S, WANG B, CUI B, SUN L. Deep desulfurization of diesel oil oxidized by Fe (Ⅵ) systems[J]. Fuel, 2008,87(3):422-428.

    7. [7]

      ZHANG J, WANG A, LI X, MA X. Oxidative desulfurization of dibenzothiophene and diesel over[Bmim]3PMo12O40[J]. J Catal, 2011,279(2):269-275.  

    8. [8]

      SUN B, YU X, WANG L, FENG L J, LI C H. Enhanced visible light photocatalytic oxidative desulfurization by BiOBr-graphene composite[J]. J Fuel Chem Technol, 2016,44(9):1074-1081. doi: 10.1016/S1872-5813(16)30049-4

    9. [9]

      ZENG A X, XIAO X, LI Y, CHEN J, WANG H. Deep desulfurization of liquid fuels with molecular oxygen through graphene photocatalytic oxidation[J]. Appl Catal B:Environ, 2017,209:98-109. doi: 10.1016/j.apcatb.2017.02.077

    10. [10]

      CHICA A, CORMA A, DÓMINE M E. Catalytic oxidative desulfurization (ODS) of diesel fuel on a continuous fixed-bed reactor[J]. J Catal, 2006,242(2):299-308.  

    11. [11]

      GAO Y, GAO R, ZHANG G, ZHENG Y, ZHAO J. Oxidative desulfurization of model fuel in the presence of molecular oxygen over polyoxometalate based catalysts supported on carbon nanotubes[J]. Fuel, 2018,224:261-270. doi: 10.1016/j.fuel.2018.03.034

    12. [12]

      SARAVANAN R, KARTHIKEYAN S, GUPTA V K, SEKARAN G, NARAYANAN V, STEPHEN A. Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination[J]. Mater Sci Eng C, 2013,33(1):91-98.  

    13. [13]

      ZHU L, LI H, LIU Z, XIA P, XIE Y, XIONG D. Synthesis of 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity synthesis of 0D/3D CuO/ZnO heterojunction with enhanced photocatalytic activity[J]. J Phys Chem, 2018,122(17):9513-9539.  

    14. [14]

      CHEN C, LIU P, LU C. Synthesis and characterization of nano-sized ZnO powders by direct precipitation method[J]. Chem Eng J, 2008,144(3):509-513.  

    15. [15]

      PHIWDANG K, SUPHANKIJ S, MEKPRASART W. Synthesis of CuO nanoparticles by precipitation method using different precursors[J]. Energy Procedia, 2013,34:740-745. doi: 10.1016/j.egypro.2013.06.808

    16. [16]

      LI B, WANG Y. Superlattices and microstructures facile synthesis and photocatalytic activity of ZnO-CuO nanocomposite[J]. Superlattices Microstruct, 2010,47(5):615-623. doi: 10.1016/j.spmi.2010.02.005

    17. [17]

      KHAN M F, ANSARI A H, HAMMEEDULLAH M, AHMAD E, HUSAIN F M, ZIA Q, BAIG U, ZAHEER M R, ALAM M M, KHAN A H, ALOTHMAN Z A, AHMAD I, ASHRAF G N, ALIEV G. Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities:Potential role as nano-antibiotics[J]. Sci Rep, 2016,27689.

    18. [18]

      KUMARI R, SAHAI A, GOSWAMI N. Effect of nitrogen doping on structural and optical properties of ZnO nanoparticles[J]. Prog Nat Sci Mater Int, 2015,25(4):300-309. doi: 10.1016/j.pnsc.2015.08.003

    19. [19]

      MOEZZI A, MCDONAGH A M, CORTIE M B. Zinc oxide particles:Synthesis, properties and applications[J]. Chem Eng J, 2012,185.  

    20. [20]

      SATHISHKUMAR P, SWEENA R, WU J J, ANANDAN S. Synthesis of CuO-ZnO nanophotocatalyst for visible light assisted degradation of a textile dye in aqueous solution[J]. Chem Eng J, 2011,171(1):136-140.  

    21. [21]

      MUTYALA S, FAIRBRIDGE C, PARÉ J R J, BÉLANGER J M R, NG S, HAWKINS R. Microwave applications to oil sands and petroleum:A review[J]. Fuel Process Technol, 2010,91(2):127-135. doi: 10.1016/j.fuproc.2009.09.009

    22. [22]

      MIADONYE A, SNOW S, IRWIN D J G, KHAN M R, BRITTEN A J. Desulfurization of heavy crude oil by microwave irradiation[J]. 2009, 63: 455-465.

    23. [23]

      MESDOUR S, LEKBIR C, DOUMANDJI L, HAMADA B. Microwave-assisted extractive catalytic-oxidative desulfurization of diesel fuel via a VO (acac)2/ionic liquid system with H2O2 and H2SO4 as oxidizing agents[J]. J Sulfur Chem, 2017,38(4):421-439. doi: 10.1080/17415993.2017.1304550

    24. [24]

      SHANG H, ZHANG H, DU W, LIU Z. Development of microwave assisted oxidative desulfurization of petroleum oils:A review[J]. J Ind Eng Chem, 2013,19(5):1426-1432. doi: 10.1016/j.jiec.2013.01.015

  • 加载中
    1. [1]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    2. [2]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    3. [3]

      Qijun Tang Wenguang Tu Yong Zhou Zhigang Zou . High efficiency and selectivity catalyst for photocatalytic oxidative coupling of methane. Chinese Journal of Structural Chemistry, 2023, 42(12): 100170-100170. doi: 10.1016/j.cjsc.2023.100170

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    6. [6]

      Qiang CaoXue-Feng ChengJia WangChang ZhouLiu-Jun YangGuan WangDong-Yun ChenJing-Hui HeJian-Mei Lu . Graphene from microwave-initiated upcycling of waste polyethylene for electrocatalytic reduction of chloramphenicol. Chinese Chemical Letters, 2024, 35(4): 108759-. doi: 10.1016/j.cclet.2023.108759

    7. [7]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    8. [8]

      Jie ZhouChuanxiang ZhangChangchun HuShuo LiYuan LiuZhu ChenSong LiHui ChenRokayya SamiYan Deng . Electrochemical aptasensor based on black phosphorus-porous graphene nanocomposites for high-performance detection of Hg2+. Chinese Chemical Letters, 2024, 35(11): 109561-. doi: 10.1016/j.cclet.2024.109561

    9. [9]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    10. [10]

      Hongwei DingJingjing YangYongchen ShuaiDi WeiXueliang LiuGuiying LiLin JinJianliang ShenIn situ preparation of tannin-mediated CeO2@CuS nanocomposites for multimodal wound therapy. Chinese Chemical Letters, 2025, 36(6): 110286-. doi: 10.1016/j.cclet.2024.110286

    11. [11]

      Hong Yin Zhipeng Yu . Hexavalent iridium catalyst enhances efficiency of hydrogen production. Chinese Journal of Structural Chemistry, 2025, 44(1): 100382-100382. doi: 10.1016/j.cjsc.2024.100382

    12. [12]

      Hui GuMingyue GaoKuan ShenTianli ZhangJunhao ZhangXiangjun ZhengXingmei GuoYuanjun LiuFu CaoHongxing GuQinghong KongShenglin Xiong . F127 assisted fabrication of Ge/rGO/CNTs nanocomposites with three-dimensional network structure for efficient lithium storage. Chinese Chemical Letters, 2024, 35(9): 109273-. doi: 10.1016/j.cclet.2023.109273

    13. [13]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    14. [14]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    15. [15]

      Yizhe ChenYuzhou JiaoLiangyu SunCheng YuanQian ShenPeng LiShiming ZhangJiujun Zhang . Nonmetallic phosphorus alloying to regulate the oxygen reduction mechanisms of platinum catalyst. Chinese Chemical Letters, 2025, 36(4): 110789-. doi: 10.1016/j.cclet.2024.110789

    16. [16]

      Shuang LiJiayu SunGuocheng LiuShuo ZhangZhong ZhangXiuli Wang . A new Keggin-type polyoxometallate-based bifunctional catalyst for trace detection and pH-universal photodegradation of phenol. Chinese Chemical Letters, 2024, 35(8): 109148-. doi: 10.1016/j.cclet.2023.109148

    17. [17]

      Yatian DengDao WangJinglan ChengYunkun ZhaoZongbao LiChunyan ZangJian LiLichao Jia . A new popular transition metal-based catalyst: SmMn2O5 mullite-type oxide. Chinese Chemical Letters, 2024, 35(8): 109141-. doi: 10.1016/j.cclet.2023.109141

    18. [18]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    19. [19]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    20. [20]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

Metrics
  • PDF Downloads(7)
  • Abstract views(636)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return