Citation: HUO Hai-hui, GAO Wen-gui, MAO Wen-shuo, NA Wei, YAN Xiao-feng, YE Hai-chuan. Effect of composition of Cu-ZnO-CeO2 catalyst on its performance for methanol synthesis from CO2 hydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 523-531. shu

Effect of composition of Cu-ZnO-CeO2 catalyst on its performance for methanol synthesis from CO2 hydrogenation

  • Corresponding author: GAO Wen-gui, gao_wengui@126.com
  • Received Date: 11 December 2018
    Revised Date: 26 February 2019

    Fund Project: the National Natural Science Foundation of China 51304099The project was supported by the National Natural Science Foundation of China (51304099) and the National Key Technologies R & D Program of China (2011BAC01B03)the National Key Technologies R & D Program of China 2011BAC01B03

Figures(8)

  • Three catalysts, CuO-CeO2 (5:1 molar ratio), CuO-ZnO (5:4 molar ratio) and CuO-ZnO-CeO2 (5:4:1 molar ratio), were prepared by coprecipitation method.The physicochemical properties of the catalysts were characterized by X-ray diffraction (XRD), hydrogen temperature reduction (H2-TPR), CO2 temperature programmed desorption (CO2-TPD), nitrogen adsorption desorption, X-ray photoelectron spectroscopy (XPS), N2O titration.The activity of the catalyst was evaluated in a catalytic microreactor.The results show that, the physicochemical properties and catalytic activity of the ternary CuO-ZnO-CeO2 catalyst are different from that of the binary catalyst, specifically, the strength of surface alkaline sites are increased, the thermal stability is enhanced, the particle size of CuO particles is reduced, the dispersion of copper and the concentration of oxygen vacancies are increased, and the catalytic activity is finally improved. In the CuO-ZnO-CeO2 catalyst, the CuO particle size is 8.2nm, the specific surface area of copper is 68.4m2/g, the copper dispersion is 7.19%, the selectivity and the yield of methanol are 48.6% and 0.057mmol/(g·min), respectively.
  • 加载中
    1. [1]

      TANG Hong-qing. Review and prospect of coal chemical process technology I. Coal gasification technology[J]. J Fuel Chem Technol, 2001,29(1):4-8.  

    2. [2]

      GENG W H, HAN H, LIU F, LIU X R, XIAO L F, WU W. N, P, S-codoped C@nano-Mo2C as an efficient catalyst for high selective synthesis of methanol from CO2 hydrogenation[J]. J CO2 Util, 2017,21:64-71. doi: 10.1016/j.jcou.2017.06.016

    3. [3]

      CARRADO K A, KIM J H, SONG C S, CASTAGNOLA N, MARSHALL C L, SCHWARTZ M M. HDS and deep HDS activity of CoMoS-mesostructured clay catalysts[J]. Catal Today, 2006,116(4):478-484.  

    4. [4]

      RAMACHANDRIYA K D, KUNDIYANA D K, WILKINS M R, TERRILL J B, ATIYEH H K, HUHNKE R L. Carbon dioxide conversion to fuels and chemicals using a hybrid green process[J]. Appl Energy, 2013,112(4):289-299.  

    5. [5]

      BAIKER A. Utilization of carbon dioxide in heterogeneous catalytic synthesis[J]. Appl Organomet Chem, 2000,14(12):751-762.  

    6. [6]

      LI L, ZHANG Y, ZHENG Q, ZHENG Y H, CHEN C Q, SHE Y S, LIN X Y, WEI K M. Water-gas shift reaction over CuO/CeO2, catalysts:Effect of the thermal stability and oxygen vacancies of CeO2, supports previously prepared by different methods[J]. Catal Lett, 2009,130(3/4):532-540.

    7. [7]

      TURSUNOV O, KUSTOV L, TILYABAEV Z. Methanol synthesis from the catalytic hydrogenation of CO2, over CuO-ZnO supported on aluminum and silicon oxides[J]. J Taiwan Inst Chem E, 2017,78:416-422.

    8. [8]

      LAETITIA A, KILIAN K, LEIDY M, MARTINEZ T, YVAN Z, KSENIA P, ANNE C. Iconography:Study of CuZnMOx oxides (M=Al, Zr, Ce, CeZr) for the catalytic hydrogenation of CO2 into methanol[J]. Biopolymers, 1972,11(10):2141-2145.  

    9. [9]

      HAYWARD J S, SMITH P J, KONDRAT S A, BOWKER M, HUTCHINGS G J. The effects of secondary oxides on copper-based catalysts for green methanol synthesis[J]. ChemCatChem, 2017,9(9):1655-1662. doi: 10.1002/cctc.201601692

    10. [10]

      WITOON T, CHALORNGTHAM J, DOMRONGBUNDITKUL P, CHAREONPANICH M, LIMTRAKUL J. CO2, hydrogenation to methanol over Cu/ZrO2, catalysts:Effects of zirconia phases[J]. Chem Eng J, 2016,293:327-336.  

    11. [11]

      ZHANG H, LI F, GAO P, ZHAO N, XIAO F K, WEI W, ZHONG L S, SUN Y H. Methanol synthesis from CO2, hydrogenation over La-M-Cu-Zn-O (M=Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors[J]. J Power Sources, 2014,251(251):113-121.  

    12. [12]

      BAN H, LI C, ASAMI K, FUJIMOTO K. Influence of rare-earth elements (La, Ce, Nd and Pr) on the performance of Cu/Zn/Zr catalyst for CH3OH synthesis from CO2[J]. Catal Commun, 2014,54:50-54.  

    13. [13]

      WITOON T, NUMPILAI T, PHONGAMWONG T, DONPHAI W, BOONYUEN CWARAKULWIT C, CHAREONPANICH M, LIMTRAKUL J. Enhancedactivity, selectivity and stability of a CuO-ZnO-ZrO2, catalyst by adding graphene oxide for CO2, hydrogenation to methanol[J]. Chem Eng J, 2018,334:1781-1791.  

    14. [14]

      DEERATTRAKUL V, DITTANET P, SAWANGPHRUK M, KONGKACHUICHAY P. CO2, hydrogenation to methanol using Cu-Zn catalyst supportedon reduced graphene oxide nanosheets[J]. J CO2 Util, 2016,16:104-113.  

    15. [15]

      CHENG Peng-ze, GAO Wen-gui, NA Wei, WANG Yu-hao, LI Yan-yan, XU Mao-mao. Effect of different precipitants on the performance of Cu-ZnO-ZrO2 catalyst for hydrogenation of CO2 to methanol[J]. Chem Ind Eng Prog, 2017,36(8):2955-2961.  

    16. [16]

      PHONGAMWONG T, CHANTAPRASERTPORN U, WITOON T, NUMPILAI T. CO2 hydrogenation to methanol over CuO-ZnO-ZrO2-SiO2 catalysts:Effects of SiO2contents[J]. Chem Eng J, 2017,316:692-703.

    17. [17]

      CHEN Jun-jun, GAO Wen-gui, WANG Hua, NA Wei. Effect of CaO on the Performance of Cu-ZnO-ZrO2 Catalyst for CO2 and H2 Synthesis of Methanol[J]. J Fuel Chem Technol, 2016,44(4):437-448. doi: 10.3969/j.issn.0253-2409.2016.04.008 

    18. [18]

      DUMRONGBUNDITKUL P, WITOON T, CHAREONPANICH M, THUMRONGRUT M. Preparation and characterization of Co-Cu-ZrO2 nanomaterials and their catalytic activity in CO2 methanation[J]. Ceram Int, 2016,42(8):10444-10451. doi: 10.1016/j.ceramint.2016.03.193

    19. [19]

      LI Y Y, NA W, WANG H, GAO W G. Hydrogenation of CO2, to methanol over Au-CuO/SBA-15 catalysts[J]. J Porous Mater, 2016,24(3):1-9.  

    20. [20]

      PEREZHERNANDEZ R, GUTIERREZMARTINEZ A, PALACIOS J, VEGAHERNANDEZ M, RODRIGUEZLUGO V. Hydrogen production by oxidativesteam reforming of methanol over Ni/CeO-ZrO catalysts[J]. Int J of Hydrogen Energy, 2011,36(11):6601-6608.  

    21. [21]

      ATAKAN A, MÄKIE P, SÖDERLIND F, KERAUDY J, BJORK E M, ODEN M. Synthesis of a Cu-infiltrated Zr-doped SBA-15 catalyst for CO2 hydrogenation into methanol and dimethyl ether[J]. Phys Chem Chem Phys, 2017,19(29):19139-19149. doi: 10.1039/C7CP03037A

    22. [22]

      WANG Y H, GAO W G, WANG H, ZHENG Y E, LI K Z, MA R G. Morphology and activity relationships of macroporous CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation[J]. Rare Metals, 2016,35(10):790-796.  

    23. [23]

      WANG F, WEI M, EVANS D G, DUAN X. CeO2-based heterogeneous catalysts toward catalytic conversion of CO2[J]. J Mater Chem A, 2016,4:5773-5783. doi: 10.1039/C5TA10737G

    24. [24]

      ZHOU G L, DAI B C, XIE H M, ZHANG G Z, XIONG K, ZHENG X X. Ce-Cu composite catalyst for CO synthesis by reverse water-gas shift reaction:Effect of Ce/Cu mole ratio[J]. J CO2 Util, 2017,21:292-301.  

    25. [25]

      DAI B, ZHOU G, GE S, XIE H, JIAO Z, ZHANG G, XIONG K. CO2 reverse water-gas shift reaction on mesoporous M-CeO2 catalysts[J]. Can J Chem Eng, 2017,95(4).  

    26. [26]

      HONG L, HOU Z, XIE J. Hydrogenation of CO2 to CH3OH over CuO/ZnO/Al2O3 catalysts prepared via a solvent-free routine[J]. Fuel, 2016,164:191-198.  

    27. [27]

      GAO P, LI F, XIAO F K, ZGAO N, WEI W, ZHONG L S, SUN Y H. Effect of hydrotalcite-containing precursors on the performance of Cu/Zn/Al/Zr catalysts for CO2 hydrogenation:Introduction of Cu2+ at different formation stages of precursors[J]. Catal Today, 2012,194(1):9-15.  

    28. [28]

      DAI W L, SUN Q, DENG J F. XPS studies of Cu/ZnO/Al2O3, ultra-fine catalysts derived by a novel gel oxalate co-precipitation for methanol synthesis by CO2 +H2[J]. Appl Surf Sci, 2001,177(3):172-179.  

    29. [29]

      LI C H, LI K Z, WANG H, ZHU X, WEI Y G, YAN D X, CHENG X M, ZHAI K. Soot combustion over Ce1-xFexO2-δ and CeO2/Fe2O3 catalysts:Roles of solid solution and interfacial interactions in the mixed oxides[J]. Appl Surf Sci, 2016,390:513-525. doi: 10.1016/j.apsusc.2016.08.122

    30. [30]

      ZENG L P, LI K Z, WANG H, YU H, ZHU X, WEI Y, GNING P H, SHI C Z, LUO Y M. CO oxidation on Au/α-Fe2O3-hollow catalysts:General synthesis and structural dependence[J]. J Phys Chem C, 2017,121(23).  

    31. [31]

      LI D Y, LI K Z, XU R D, WANG H, TIAN D, WEI Y G, ZHU X, ZENG C H, ZENG L P. Ce1-xFexO2-δ catalysts for catalytic methane combustion:Role of oxygen vacancy and structural dependence[J]. Catal Today, 2018,318:73-85.

    32. [32]

      GAO P, YANG H, ZHANG L. Fluorinated Cu/Zn/Al/Zr hydrotalcites derived nanocatalysts for CO2, hydrogenation to methanol[J]. J CO2 Util, 2016,16:32-41. doi: 10.1016/j.jcou.2016.06.001

    33. [33]

      LEI H, NIE R F, WU G Q, HOU Z Y. Hydrogenation of CO2, to CH3OH over Cu/ZnO catalysts with different ZnO morphology[J]. Fuel, 2015,154:161-166. doi: 10.1016/j.fuel.2015.03.052

    34. [34]

      LIU Y X, SUN K P, MA H W, XU X L, XIAO L. Cr, Zr-incorporated hydrotalcites and their application in the synthesis of isophorone[J]. Catal Commun, 2010,11(10):880-883.  

    35. [35]

      WU G D, WANG X L, WEI W, SUN Y H. Fluorine-modified Mg-Al mixed oxides:A solid base with variable basic sites and tunable basicity[J]. Appl Catal A:Gen, 2010,377(1):107-113.

    36. [36]

      GUO X M, MAO D S, LU G Z, WANG S, WU G S. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation[J]. J Mol Catal A:Chem, 2011,345(1):60-68.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    7. [7]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    8. [8]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    12. [12]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    13. [13]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    14. [14]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    16. [16]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    17. [17]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    18. [18]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    20. [20]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

Metrics
  • PDF Downloads(12)
  • Abstract views(971)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return