Effect of ZSM-5 crystal size on its catalytic properties for conversion of methanol to gasoline
- Corresponding author: LI Zhong, lizhong@tyut.edu.cn
Citation:
SHAO Juan, FU Ting-jun, CHANG Jiang-wei, WAN Wei-li, QI Rui-yue, LI Zhong. Effect of ZSM-5 crystal size on its catalytic properties for conversion of methanol to gasoline[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(1): 75-83.
HU Jin-xian, HU Jing-wen, WANG Jun-jie, XIANG Hong-wei, LI Yong-wang. Study of MTG process with ZSM-5 zeolites which have different acid properties[J]. Nat Gas Chem Ind, 2001,26(6):12-15.
ZHONG Bing, LUO Qing-yun, XIAO You-xie, ZHANG Wei. Reaction mechanism of mehtnaol to hydrocatbons on HZSM-5[J]. J Fuel Chem Technol, 1986,14(1):9-16.
TIAN P, WEI Y X, YE M, LIU Z M. Methanol to olefins (MTO):From fundamentals to commercialization[J]. ACS Catal, 2015,5(3):1922-1938. doi: 10.1021/acscatal.5b00007
XIE Z K, LIU Z C, WANG Y D, JIN Z H. Applied catalysis for sustainable development of chemical industry in China[J]. Nat Sci Rev, 2015,2(2):167-182. doi: 10.1093/nsr/nwv019
MEI C S, WEN P Y, LIU Z C, LIU H X, WANG Y D, YANG W M, XIE Z K, HUA W M, GAO Z. Selective production of propylene from methanol:Mesoporosity development in high silica HZSM-5[J]. J Catal, 2008,258(1):243-249. doi: 10.1016/j.jcat.2008.06.019
BJØRGEN M, JOENSEN F, SPANGSBERG H M, OLSBYE U, LILLERYD K P, SVELLE S. Methanol to gasoline over zeolite H-ZSM-5:Improved catalyst performance by treatment with NaOH[J]. Appl Catal A:Gen, 2008,345(1):43-50. doi: 10.1016/j.apcata.2008.04.020
MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, Wang Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization[J]. J Fuel Chem Technol, 2012,40(10):1230-1239.
XU Feng, DONG Mei, GOU Wei-yong, HUANG Li-zhi, LI Jun-fen, FAN Wei-bin, QIN Zhang-feng, WANG Jian-guo. Size-controllable synthesis of ZSM-5molecular sieves and their catalytic performance in the conversion of methanol to hydrocarbons[J]. J Fuel Chem Technol, 2012,40(5):576-582.
CORMA A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem Rev, 1997,97(6):2373-2420. doi: 10.1021/cr960406n
CHANG Jiang-wei, FU Ting-jun, LI Zhong. The study of size control of ZSM-5 crystal and the coke formation and location on ZSM-5 during methanol to hydrocarbons conversion process[J]. Nat Gas Chem Ind, 2016,41(1):61-67.
BLEKEN F L, BARBERA K, BONINO F, OLSBYE U, LILLERUD K P, BORDIGA S, BEATO P, JANSSENS T V W, SVELLE S. Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons[J]. J Catal, 2013,307(6):62-73.
WEN Peng-yu, MEI Chang-song, LIU Hong-xing, YANG Wei-min, CHEN Qing-ling. Deactivation of zsm-5 catalysts during methanol-to-propylene process[J]. Acta Pet Sin (Pet Process), 2008,24(4):446-450.
MCLELLAN G D, HOWE R F, PARKER L M, BIBBY D M. Effects of coke formation on the acidity of ZSM-5[J]. J Catal, 1986,99(2):486-491. doi: 10.1016/0021-9517(86)90373-8
LEE J, HONG U G, HWANG S, YOUN M H, SONG I K. Production of light olefins through catalytic cracking of C5 raffinate over carbon-templated ZSM-5[J]. Fuel Process Technol, 2013,108(4):25-30.
HU Z, ZHANG H B, WANG L, ZHANG H X, ZHANG Y H, XU H L, SHEN W, TANG Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catal Sci Technol, 2014,4(9):2891-2895. doi: 10.1039/C4CY00376D
XIAO Q, YAO Q S, ZHUANG J, LIU G, ZHONG Y J, ZHU W D. A localized crystallization to hierarchical ZSM-5 microspheres aided by silane coupling agent[J]. J Colloid Interface Sci, 2013,394(1):604-610.
MOCHIZUKI H, YOKOI T, IMAI H, WATANABE R, NAMBA S, KONDO J N, TATSUMI T. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane[J]. Microporous Mesoporous Mater, 2011,145(1/3):165-171.
TAO Y S, KANOH H, ARAMS L, KANEKO K. Mesopore-modified zeolites:Preparation, characterization, and applications[J]. Chem Rev, 2006,106(3):896-910. doi: 10.1021/cr040204o
LU Xin-qing, XU Chun-hui, ZHANG Fu-min, ZHONG Yi-jun, ZHU Wei-dong. Influence factors for preparation of meso-microporous zeolites by alkali-treatment and their research progress[J]. Chem Ind Eng Prog, 2014,33(8):2038-2043.
KORTUNOV P, VASENKOV S, KÄRGER J, VALIULLIN R, GOTTSCHALK P, FÉ ELÍAM, PEREZ M, STÓCKER M, DRESCHER B, MCELHINEY G, BERGER C, GLÄSER R, WEITKAMP J. The role of mesopores in intracrystalline transport in USY zeolite:PFG NMR diffusion study on various length scales[J]. J Am Chem Soc, 2005,127(37):13055-13059. doi: 10.1021/ja053134r
ABELLÓS , BONILLA A, PÉREZ-RAMÍREZ J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Appl Catal A:Gen, 2009,364(1/2):191-198.
OGURA M, SHINOMIYA S Y, TATENOA J, NARA Y, NOMURA M, KIKUCHI E, MATSULATA M. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl Catal A:Gen, 2001,219(1/2):33-43.
CHANG Jiang-wei, FU Ting-jun, ZHANG Hong-jian, ZHOU Hao, LI Zhong. Effect of alkaline concentration on mesopore formation in acid pre-treated HZSM-5 zeolite and its catalytic performance in the methanol-to-gasoline reaction[J]. Chin J Inorg Chem, 2015,31(11):2119-2127.
MAJANO G, DARWICHE A, MINTOVA S, VALTCHEV V. Seed-induced crystallization of nanosized na-ZSM-5 crystals[J]. Ind Eng Chem Res, 2009,48(15):7084-7091. doi: 10.1021/ie8017252
TOSHEVA L, VALTCHEV V P. Nanozeolites:Synthesis, crystallization mechanism, and applications[J]. Chem Mater, 2005,17(10):2494-2513. doi: 10.1021/cm047908z
ALIPOUR S M. Recent advances in naphtha catalytic cracking by nano ZSM-5:A review[J]. Chin J Catal, 2016,37(5):671-680. doi: 10.1016/S1872-2067(15)61091-9
REDDY J K, MOTOKURA K, KOYAMA T R, MIYAJI A, BABA T. Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking[J]. J Catal, 2012,289(5):53-61.
ROWNAGHI A A, HEDLUND J. Methanol to gasoline-range hydrocarbons:Influence of nanocrystal size and mesoporosity on catalytic performance and product distribution of ZSM-5[J]. Ind Eng Chem Res, 2011,50(21):11872-11878. doi: 10.1021/ie201549j
SHIRALKAR V P, JOSHI P N, EAPEN M J, RAO B S. Synthesis of ZSM-5 with variable crystallite size and its influence on physicochemical properties[J]. Zeolites, 1991,11(5):511-516. doi: 10.1016/S0144-2449(05)80127-7
ZHANG H B, MA Y C, SONG K S, ZHANG Y H, TANG Y. Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties:Effects of accessibility and strength of acid sites[J]. J Catal, 2014,302(6):115-125.
FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun, 2009,10(12):1582-1585. doi: 10.1016/j.catcom.2009.04.021
LARSEN S C. Nanocrystalline zeolites and zeolite structures:Synthesis, characterization, and applications[J]. J Phys Chem C, 2007,111(50):18464-18474. doi: 10.1021/jp074980m
SONG W, JUSTICE R E, JONES C A, GRASSIAN V H, LARSEN S C. Size-dependent properties of nanocrystalline silicalite synthesized with systematically varied crystal sizes[J]. Langmuir, 2004,20(11):4696-4702. doi: 10.1021/la049817m
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Guimin ZHANG , Wenjuan MA , Wenqiang DING , Zhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293
Ping ZHANG , Chenchen ZHAO , Xiaoyun CUI , Bing XIE , Yihan LIU , Haiyu LIN , Jiale ZHANG , Yu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
Haiyuan Wang , Yiming Tang , Haoran Guo , Guohui Chen , Yajing Sun , Chao Zhao , Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Xinzhe HUANG , Lihui XU , Yue YANG , Liming WANG , Zhangyong LIU , Zhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212
Tingyu Zhu , Hui Zhang , Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
Min WANG , Dehua XIN , Yaning SHI , Wenyao ZHU , Yuanqun ZHANG , Wei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477
Xin Zhou , Zhi Zhang , Yun Yang , Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008
Zhiwen HU , Weixia DONG , Qifu BAO , Ping LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Qianqian Liu , Xing Du , Wanfei Li , Wei-Lin Dai , Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016
Jiaxing Cai , Wendi Xu , Haoqiang Chi , Qian Liu , Wa Gao , Li Shi , Jingxiang Low , Zhigang Zou , Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002
Meng Lin , Hanrui Chen , Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117
1: pressure gauge; 2: pressure reducing value; 3: globe value; 4: gas flowmeter; 5: stock tank; 6: filter; 7: micro tube pump; 8: preheater; 9: reactor; 10: condensate recirculating tank; 11: condensator; 12: liquid storage tank; 13: wet gas flowmeter; 14: gas chromatography (Agilent GC); 15: computer
(a), (a′): ZY5-70; (b), (b′): ZY5-200; (c), (c′): ZY5-400; (d), (d′): ZY5-650
reaction condition: p=1.0 MPa, t=405 ℃, WHSV=4.74 h-1