Citation: SHAO Juan, FU Ting-jun, CHANG Jiang-wei, WAN Wei-li, QI Rui-yue, LI Zhong. Effect of ZSM-5 crystal size on its catalytic properties for conversion of methanol to gasoline[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(1): 75-83. shu

Effect of ZSM-5 crystal size on its catalytic properties for conversion of methanol to gasoline

  • Corresponding author: LI Zhong, lizhong@tyut.edu.cn
  • Received Date: 6 June 2016
    Revised Date: 24 August 2016

    Fund Project: Science and Technology Infrastructure Plat form Construction Program of Shanxi Procince 2015091009National Natural Science Foundation of China 21606160the Qualified Personnel Foundation of Taiyuan University of Technology tyut-rc201454a

Figures(10)

  • Four-sized monodispersed ZSM-5 crystals, being 70, 200, 400 and 650 nm, were hydrothermally synthesized by changing the H2O/Si molar ratio in the synthesis gel, and characterized with XRD, TEM, BET and NH3-TPD techniques. The crystal size effect of ZSM-5 on its catalytic performance for conversion of methanol to gasoline (MTG) was investigated. It was shown that the external surface area of the sample decreased with its crystal size, while the acid site amount firstly increased, and then kept almost constant. Nevertheless, 650 nm ZSM-5 crystals attaching small particles exhibit large external surface area and strong acidity. The catalytic stability and the liquid hydrocarbon yield decreased with increasing crystal size. The sample with a crystal size of 70 nm shows a catalytic lifetime of 96 h and a gasoline yield of 30.8%. The large external surface area and relatively strong acidity endow the sample with a crystal size of 650 nm also has a catalytic lifetime of 91 h, indicating that synthesis of large ZSM-5 crystals with small crystallites adhered to their surface could be a potential way to improve the catalytic performance.
  • 加载中
    1. [1]

      HU Jin-xian, HU Jing-wen, WANG Jun-jie, XIANG Hong-wei, LI Yong-wang. Study of MTG process with ZSM-5 zeolites which have different acid properties[J]. Nat Gas Chem Ind, 2001,26(6):12-15.  

    2. [2]

      ZHONG Bing, LUO Qing-yun, XIAO You-xie, ZHANG Wei. Reaction mechanism of mehtnaol to hydrocatbons on HZSM-5[J]. J Fuel Chem Technol, 1986,14(1):9-16.  

    3. [3]

      TIAN P, WEI Y X, YE M, LIU Z M. Methanol to olefins (MTO):From fundamentals to commercialization[J]. ACS Catal, 2015,5(3):1922-1938. doi: 10.1021/acscatal.5b00007

    4. [4]

      XIE Z K, LIU Z C, WANG Y D, JIN Z H. Applied catalysis for sustainable development of chemical industry in China[J]. Nat Sci Rev, 2015,2(2):167-182. doi: 10.1093/nsr/nwv019

    5. [5]

      MEI C S, WEN P Y, LIU Z C, LIU H X, WANG Y D, YANG W M, XIE Z K, HUA W M, GAO Z. Selective production of propylene from methanol:Mesoporosity development in high silica HZSM-5[J]. J Catal, 2008,258(1):243-249. doi: 10.1016/j.jcat.2008.06.019

    6. [6]

      BJØRGEN M, JOENSEN F, SPANGSBERG H M, OLSBYE U, LILLERYD K P, SVELLE S. Methanol to gasoline over zeolite H-ZSM-5:Improved catalyst performance by treatment with NaOH[J]. Appl Catal A:Gen, 2008,345(1):43-50. doi: 10.1016/j.apcata.2008.04.020

    7. [7]

      MIAO Qing, DONG Mei, NIU Xian-jun, WANG Hao, FAN Wei-bin, Wang Jian-guo, QIN Zhang-feng. Synthesis of gallium-containing ZSM-5 molecular sieves and their catalytic performance in methanol aromatization[J]. J Fuel Chem Technol, 2012,40(10):1230-1239.  

    8. [8]

      XU Feng, DONG Mei, GOU Wei-yong, HUANG Li-zhi, LI Jun-fen, FAN Wei-bin, QIN Zhang-feng, WANG Jian-guo. Size-controllable synthesis of ZSM-5molecular sieves and their catalytic performance in the conversion of methanol to hydrocarbons[J]. J Fuel Chem Technol, 2012,40(5):576-582.  

    9. [9]

      CORMA A. From microporous to mesoporous molecular sieve materials and their use in catalysis[J]. Chem Rev, 1997,97(6):2373-2420. doi: 10.1021/cr960406n

    10. [10]

      CHANG Jiang-wei, FU Ting-jun, LI Zhong. The study of size control of ZSM-5 crystal and the coke formation and location on ZSM-5 during methanol to hydrocarbons conversion process[J]. Nat Gas Chem Ind, 2016,41(1):61-67.  

    11. [11]

      BLEKEN F L, BARBERA K, BONINO F, OLSBYE U, LILLERUD K P, BORDIGA S, BEATO P, JANSSENS T V W, SVELLE S. Catalyst deactivation by coke formation in microporous and desilicated zeolite H-ZSM-5 during the conversion of methanol to hydrocarbons[J]. J Catal, 2013,307(6):62-73.  

    12. [12]

      WEN Peng-yu, MEI Chang-song, LIU Hong-xing, YANG Wei-min, CHEN Qing-ling. Deactivation of zsm-5 catalysts during methanol-to-propylene process[J]. Acta Pet Sin (Pet Process), 2008,24(4):446-450.  

    13. [13]

      MCLELLAN G D, HOWE R F, PARKER L M, BIBBY D M. Effects of coke formation on the acidity of ZSM-5[J]. J Catal, 1986,99(2):486-491. doi: 10.1016/0021-9517(86)90373-8

    14. [14]

      LEE J, HONG U G, HWANG S, YOUN M H, SONG I K. Production of light olefins through catalytic cracking of C5 raffinate over carbon-templated ZSM-5[J]. Fuel Process Technol, 2013,108(4):25-30.  

    15. [15]

      HU Z, ZHANG H B, WANG L, ZHANG H X, ZHANG Y H, XU H L, SHEN W, TANG Y. Highly stable boron-modified hierarchical nanocrystalline ZSM-5 zeolite for the methanol to propylene reaction[J]. Catal Sci Technol, 2014,4(9):2891-2895. doi: 10.1039/C4CY00376D

    16. [16]

      XIAO Q, YAO Q S, ZHUANG J, LIU G, ZHONG Y J, ZHU W D. A localized crystallization to hierarchical ZSM-5 microspheres aided by silane coupling agent[J]. J Colloid Interface Sci, 2013,394(1):604-610.  

    17. [17]

      MOCHIZUKI H, YOKOI T, IMAI H, WATANABE R, NAMBA S, KONDO J N, TATSUMI T. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane[J]. Microporous Mesoporous Mater, 2011,145(1/3):165-171.  

    18. [18]

      TAO Y S, KANOH H, ARAMS L, KANEKO K. Mesopore-modified zeolites:Preparation, characterization, and applications[J]. Chem Rev, 2006,106(3):896-910. doi: 10.1021/cr040204o

    19. [19]

      LU Xin-qing, XU Chun-hui, ZHANG Fu-min, ZHONG Yi-jun, ZHU Wei-dong. Influence factors for preparation of meso-microporous zeolites by alkali-treatment and their research progress[J]. Chem Ind Eng Prog, 2014,33(8):2038-2043.  

    20. [20]

      KORTUNOV P, VASENKOV S, KÄRGER J, VALIULLIN R, GOTTSCHALK P, FÉ ELÍAM, PEREZ M, STÓCKER M, DRESCHER B, MCELHINEY G, BERGER C, GLÄSER R, WEITKAMP J. The role of mesopores in intracrystalline transport in USY zeolite:PFG NMR diffusion study on various length scales[J]. J Am Chem Soc, 2005,127(37):13055-13059. doi: 10.1021/ja053134r

    21. [21]

      ABELLÓS , BONILLA A, PÉREZ-RAMÍREZ J. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Appl Catal A:Gen, 2009,364(1/2):191-198.

    22. [22]

      OGURA M, SHINOMIYA S Y, TATENOA J, NARA Y, NOMURA M, KIKUCHI E, MATSULATA M. Alkali-treatment technique-new method for modification of structural and acid-catalytic properties of ZSM-5 zeolites[J]. Appl Catal A:Gen, 2001,219(1/2):33-43.  

    23. [23]

      CHANG Jiang-wei, FU Ting-jun, ZHANG Hong-jian, ZHOU Hao, LI Zhong. Effect of alkaline concentration on mesopore formation in acid pre-treated HZSM-5 zeolite and its catalytic performance in the methanol-to-gasoline reaction[J]. Chin J Inorg Chem, 2015,31(11):2119-2127.  

    24. [24]

      MAJANO G, DARWICHE A, MINTOVA S, VALTCHEV V. Seed-induced crystallization of nanosized na-ZSM-5 crystals[J]. Ind Eng Chem Res, 2009,48(15):7084-7091. doi: 10.1021/ie8017252

    25. [25]

      TOSHEVA L, VALTCHEV V P. Nanozeolites:Synthesis, crystallization mechanism, and applications[J]. Chem Mater, 2005,17(10):2494-2513. doi: 10.1021/cm047908z

    26. [26]

      ALIPOUR S M. Recent advances in naphtha catalytic cracking by nano ZSM-5:A review[J]. Chin J Catal, 2016,37(5):671-680. doi: 10.1016/S1872-2067(15)61091-9

    27. [27]

      REDDY J K, MOTOKURA K, KOYAMA T R, MIYAJI A, BABA T. Effect of morphology and particle size of ZSM-5 on catalytic performance for ethylene conversion and heptane cracking[J]. J Catal, 2012,289(5):53-61.  

    28. [28]

      ROWNAGHI A A, HEDLUND J. Methanol to gasoline-range hydrocarbons:Influence of nanocrystal size and mesoporosity on catalytic performance and product distribution of ZSM-5[J]. Ind Eng Chem Res, 2011,50(21):11872-11878. doi: 10.1021/ie201549j

    29. [29]

      SHIRALKAR V P, JOSHI P N, EAPEN M J, RAO B S. Synthesis of ZSM-5 with variable crystallite size and its influence on physicochemical properties[J]. Zeolites, 1991,11(5):511-516. doi: 10.1016/S0144-2449(05)80127-7

    30. [30]

      ZHANG H B, MA Y C, SONG K S, ZHANG Y H, TANG Y. Nano-crystallite oriented self-assembled ZSM-5 zeolite and its LDPE cracking properties:Effects of accessibility and strength of acid sites[J]. J Catal, 2014,302(6):115-125.  

    31. [31]

      FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun, 2009,10(12):1582-1585. doi: 10.1016/j.catcom.2009.04.021

    32. [32]

      LARSEN S C. Nanocrystalline zeolites and zeolite structures:Synthesis, characterization, and applications[J]. J Phys Chem C, 2007,111(50):18464-18474. doi: 10.1021/jp074980m

    33. [33]

      SONG W, JUSTICE R E, JONES C A, GRASSIAN V H, LARSEN S C. Size-dependent properties of nanocrystalline silicalite synthesized with systematically varied crystal sizes[J]. Langmuir, 2004,20(11):4696-4702. doi: 10.1021/la049817m

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    5. [5]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    6. [6]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    7. [7]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    8. [8]

      Haiyuan Wang Yiming Tang Haoran Guo Guohui Chen Yajing Sun Chao Zhao Zhen Zhang . Comprehensive Chemistry Experimental Teaching Design Based on the Integration of Science and Education: Preparation and Catalytic Properties of Silver Nanomaterials. University Chemistry, 2024, 39(10): 219-228. doi: 10.12461/PKU.DXHX202404067

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    11. [11]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    12. [12]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    13. [13]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    14. [14]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    15. [15]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    16. [16]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Qianqian Liu Xing Du Wanfei Li Wei-Lin Dai Bo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-. doi: 10.3866/PKU.WHXB202311016

    19. [19]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(2)
  • Abstract views(929)
  • HTML views(134)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return