Citation: ZHAO Feng-ming, WU Shi-zhong, CHEN Zhao-yang, CHU You-qun, SHI Mei-qin. Alkali-induced self-assembly Pd/Ni-Mo2C nanocatalyst for ethanol electro-oxidation[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 574-581. shu

Alkali-induced self-assembly Pd/Ni-Mo2C nanocatalyst for ethanol electro-oxidation

  • Corresponding author: CHEN Zhao-yang, chenzhy@zjut.edu.cn
  • Received Date: 14 January 2019
    Revised Date: 16 March 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21376220) and Natural Science Foundation of Zhejiang Province (LQ15B030004)Natural Science Foundation of Zhejiang Province LQ15B030004The project was supported by the National Natural Science Foundation of China 21376220

Figures(6)

  • Herein, a new superfine nano Pd/Ni-Mo2C (2-6 nm) catalyst is developed via a facile, alkali-induced self-assembly strategy. The catalyst exhibits excellent performance towards ethanol electro-catalytic oxidation in alkaline system, with an activity of 2832.2 mA/mgPd and a residual current density of 447.8 mA/mgPd, which is 2.6 and 4.7 times enhancements compared with the commercial 10% Pt/C catalyst (1107.6 and 96.1 mA/mgPd).
  • 加载中
    1. [1]

      WU T, MA Y, QU Z B, FAN J C, LI Q X, SHI P H, XU Q J, MIN Y L. Black phosphorus-graphene heterostructure-supported Pd nanoparticles with superior activity and stability for ethanol electro-oxidation[J]. ACS Appl Mater Interf, 2019,11:5136-5145. doi: 10.1021/acsami.8b20240

    2. [2]

      ZHANG H C, SHANG Y Y, ZHAO J, WANG J J. Enhanced electrocatalytic activity of ethanol oxidation reaction on palladium-silver nanoparticles via removable surface ligands[J]. ACS Appl Mater Interf, 2017,9(19):16635-16643. doi: 10.1021/acsami.7b01874

    3. [3]

      YANG H L, ZHANG X Y, ZOU H, YU Z N, LI S W, SUN J H, CHEN S D, JIN J, MA J T. Palladium nanoparticles anchored on three-dimensional nitrogen-doped carbon nanotubes as a robust electrocatalyst for ethanol oxidation[J]. ACS Sustainable Chem Eng, 2018,6(6):7918-7923. doi: 10.1021/acssuschemeng.8b01157

    4. [4]

      MARTIN R, JAKUB D, BJOÖRN R, FINN R, DAVID A H, FRANCESCO C, ROBERTO F, JOCHIM S, OLAF M M. Structural reorganization of Pt(111) electrodes by electrochemical oxidation and reduction[J]. J Am Chem Soc, 2017,139(12):4532-4539. doi: 10.1021/jacs.7b01039

    5. [5]

      MOHAMMAD S A, SEUNGWON J. Electrochemical activity evaluation of chemically damaged carbon nanotube with palladium nanoparticles for ethanol oxidation[J]. J Power Sources, 2015,282:479-488. doi: 10.1016/j.jpowsour.2015.02.072

    6. [6]

      LEANDRO L C, FLAVIO C, AURO A T. Nickel palladium electrocatalysts for methanol, ethanol, and glycerol oxidation reactions[J]. Int J Hydrogen Energy, 2017,42:16118-16126. doi: 10.1016/j.ijhydene.2017.05.124

    7. [7]

      RAJESH K, RALUCA S, RAJESH K S, EDNAN J, DINESH P S, VIDHU S T, ALFREDO R V, EVERSON T S G da S, JAQUELINE R M, LAURO T K, STANISLAV A M. Controlled density of defects assisted perforated structure in reduced graphene oxide nanosheets-palladium hybrids for enhanced ethanol electro-oxidation[J]. Carbon, 2017,117:137-146. doi: 10.1016/j.carbon.2017.02.065

    8. [8]

      LEVY R B, BOUDART M. Platinum-like behavior of tungsten carbide in surface catalysis[J]. Science, 1973,181(4099):547-549. doi: 10.1126/science.181.4099.547

    9. [9]

      LIU Y, THOMAS G K, JINGGUANG G C, WILLIAM E M. Metal carbides as alternative electrocatalyst supports[J]. ACS Catal, 2013,3:1184-1194. doi: 10.1021/cs4001249

    10. [10]

      AKHAIRI M A F, KAMARUDIN S K. Catalysts in direct ethanol fuel cell (DEFC):An overview[J]. Int J Hydrogen Energy, 2016,41:4214-4228. doi: 10.1016/j.ijhydene.2015.12.145

    11. [11]

      WANG H, SUN C, CAO Y J, ZHU J T, CHEN Y, GUO J, ZHAO J, SUN Y H, ZOU G F. Molybdenum carbide nanoparticles embedded in nitrogen-doped porous carbon nanofibers as a dual catalyst for hydrogen evolution and oxygen reduction reactions[J]. Carbon, 2017,114:628-634. doi: 10.1016/j.carbon.2016.12.081

    12. [12]

      LIN L L, SHENG W C, YAO S Y, MA D, JINGGUANG G C. Pt/Mo2C/C-cp as a highly active and stable catalyst for ethanol electrooxidation[J]. J Power Sources, 2017,345:182-189. doi: 10.1016/j.jpowsour.2017.02.001

    13. [13]

      WAN C, YAGYA N R, BRIAN M L. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction[J]. Angew Chem Int Ed, 2014,53(25):6407-6410. doi: 10.1002/anie.201402998

    14. [14]

      JAEHO J, YEREUM P, SEUNGHYUK C, JINHEE L, SUNG S L, BYOUNG H L, YOUNG J S, JEONG H C, YUN H J, SUNGJOO L. Epitaxial synthesis of molybdenum carbide and formation of a Mo2C/MoS2 hybrid structure via chemical conversion of molybdenum disulfide[J]. ACS Nano, 2018,12(1):338-346. doi: 10.1021/acsnano.7b06417

    15. [15]

      ZHONG Z W, LIU N, CHEN H Y, FU X H, YANG L C, GAO Q S. Molybdenum carbide supported by N-doped carbon:Controlled synthesis and application in electrocatalytic hydrogen evolution reaction[J]. Mater Lett, 2016,176:101-105. doi: 10.1016/j.matlet.2016.04.089

    16. [16]

      MU Y P, ZHANG Y, FANG L, LIU L, ZHANG H J, WANG Y. Controllable synthesis of molybdenum carbide nanoparticles embedded in porous graphitized carbon matrixes as efficient electrocatalyst for hydrogen evolution reaction[J]. Electrochim Acta, 2016,215:357-365. doi: 10.1016/j.electacta.2016.08.104

    17. [17]

      AYAZ H, VALDECIR A P, ALEJO C, EDSON A T. Molybdenum carbide-based electrocatalysts for CO tolerance in proton exchange membrane fuel cell anodes[J]. Electrochim Acta, 2014,142:307-316. doi: 10.1016/j.electacta.2014.07.142

    18. [18]

      LIN H L, LIU N, SHI Z P, GUO Y L, TANG Y, GAO Q S. Cobalt-doping in molybdenum-carbide nanowires toward efficient electrocatalytic hydrogen evolution[J]. Adv Funct Mater, 2016,26(31):5590-5598. doi: 10.1002/adfm.v26.31

    19. [19]

      XIONG K, LI L, ZHANG L, DING W, PENG L S, WANG Y, CHEN S G, TAN S Y, WEI Z D. Ni-doped Mo2C nanowires supported on Ni foam as a binder-free electrode for enhancing the hydrogen evolution performance[J]. J Mater Chem A, 2015,3:1863-1867. doi: 10.1039/C4TA05686H

    20. [20]

      XU X B, FARHAT N, WANG X. Ni-Decorated molybdenum carbide hollow structure derived from carbon-coated metal-organic framework for electrocatalytic hydrogen evolution reaction[J]. Chem Mater, 2016,28(17):6313-6320. doi: 10.1021/acs.chemmater.6b02586

    21. [21]

      SUYLAN L A D, ANDRE L L M, CARLSON P S. Synthesis and characterization of molybdenum carbide doped with nickel[J]. Mater Chem Phys, 2018,216:243-249. doi: 10.1016/j.matchemphys.2018.05.074

    22. [22]

      TEODÓRA N K, DÁVID H, ALEX L A DE L, IMRE M S. Thermal decomposition of ammonium molybdates[J]. J Therm Anal Calorim, 2016,124(2):1013-1021. doi: 10.1007/s10973-015-5201-0

    23. [23]

      CUI G F, SHEN P K, MENG H, ZHAO J, WU G. Tungsten carbide as supports for Pt electrocatalysts with improved CO tolerance in methanol oxidation[J]. J Power Sources, 2011,196(15):6125-6130. doi: 10.1016/j.jpowsour.2011.03.042

    24. [24]

      MA C A, CHEN Z Y, ZHAO F M. Synthesis of ultrafine mesoporous tungsten carbide by high-energy ball milling and its electrocatalytic activity for methanol oxidation[J]. Chin J Chem, 2011,29:611-616. doi: 10.1002/cjoc.v29.4

    25. [25]

      XU L J, DU J J, TANG J X, ZHANG J D. Electrochemical behavior of electrodeposited Ni-Cr alloys[J]. Mater Prot, 2008,41(2):23-25.  

  • 加载中
    1. [1]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    2. [2]

      Zhuo LiPeng YuDi ShenXinxin ZhangZhijian LiangBaoluo WangLei Wang . Low-loading Pt anchored on molybdenum carbide-based polyhedral carbon skeleton for enhancing pH-universal hydrogen production. Chinese Chemical Letters, 2025, 36(4): 109713-. doi: 10.1016/j.cclet.2024.109713

    3. [3]

      Hailong HeWenbing WangWenmin PangChen ZouDan Peng . Double stimulus-responsive palladium catalysts for ethylene polymerization and copolymerization. Chinese Chemical Letters, 2024, 35(7): 109534-. doi: 10.1016/j.cclet.2024.109534

    4. [4]

      Gongcheng MaQihang DingYuding ZhangYue WangJingjing XiangMingle LiQi ZhaoSaipeng HuangPing GongJong Seung Kim . Palladium-free chemoselective probe for in vivo fluorescence imaging of carbon monoxide. Chinese Chemical Letters, 2024, 35(9): 109293-. doi: 10.1016/j.cclet.2023.109293

    5. [5]

      Zhenkang AiHui ChenXuebin Liao . Nickel-catalyzed decarboxylative difluoromethylation and alkylation of alkenes. Chinese Chemical Letters, 2025, 36(3): 109954-. doi: 10.1016/j.cclet.2024.109954

    6. [6]

      Xiao-Bo LiuRen-Ming LiuXiao-Di BaoHua-Jian XuQi ZhangYu-Feng Liang . Nickel-catalyzed reductive formylation of aryl halides via formyl radical. Chinese Chemical Letters, 2024, 35(12): 109783-. doi: 10.1016/j.cclet.2024.109783

    7. [7]

      Shuai ZhuMingjie ChenHaichao ShenHanming DingWenbo LiJunliang Zhang . Palladium/Xu-Phos-catalyzed enantioselective arylalkoxylation reaction of γ-hydroxyalkenes at room temperature. Chinese Chemical Letters, 2024, 35(11): 109879-. doi: 10.1016/j.cclet.2024.109879

    8. [8]

      Yunqiang LiYongxian HuangSinuo LiHe HuangZhiwei Jiao . Elaborating azaaryl alkanes enabled by photoredox/palladium dual catalyzed dialkylation of azaaryl alkenes. Chinese Chemical Letters, 2025, 36(4): 110051-. doi: 10.1016/j.cclet.2024.110051

    9. [9]

      Zhao GuYunhui YangSong YeCongyang Wang . 2,3-Arylacylation of allenes through synergetic catalysis of palladium and N-heterocyclic carbene. Chinese Chemical Letters, 2025, 36(5): 110334-. doi: 10.1016/j.cclet.2024.110334

    10. [10]

      Dan ShaoYujing LyuChengyuan LiuHao WangNing MaHao XuWei YanXiaohua JiaHaojie Song . Attracting magnetic BDD particles onto Ti/RuO2-IrO2 by using a magnet: A novel 2.5-dimensional electrode for electrochemical oxidation wastewater treatment. Chinese Chemical Letters, 2025, 36(6): 110641-. doi: 10.1016/j.cclet.2024.110641

    11. [11]

      Ruilong GengLingzi PengChang Guo . Dynamic kinetic stereodivergent transformations of propargylic ammonium salts via dual nickel and copper catalysis. Chinese Chemical Letters, 2024, 35(8): 109433-. doi: 10.1016/j.cclet.2023.109433

    12. [12]

      Haoran ShiJiaxin WangYuqin ZhuHongyang LiGuodong JuLanlan ZhangChao Wang . Highly selective α-C(sp3)-H arylation of alkenyl amides via nickel chain-walking catalysis. Chinese Chemical Letters, 2024, 35(7): 109333-. doi: 10.1016/j.cclet.2023.109333

    13. [13]

      Junxin LiChao ChenYuzhen DongJian LvJun-Mei PengYuan-Ye JiangDaoshan Yang . Ligand-promoted reductive coupling between aryl iodides and cyclic sulfonium salts by nickel catalysis. Chinese Chemical Letters, 2024, 35(11): 109732-. doi: 10.1016/j.cclet.2024.109732

    14. [14]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    15. [15]

      Qiang WuBaofeng Wang . Exploring synthetic strategy for stabilizing nickel-rich layered oxide cathodes through structural design. Chinese Chemical Letters, 2024, 35(12): 110089-. doi: 10.1016/j.cclet.2024.110089

    16. [16]

      Shaobin HeXiaoyun GuoQionghua ZhengHuanran ShenYuan XuFenglin LinJincheng ChenHaohua DengYiming ZengWei Chen . Engineering nickel-supported osmium bimetallic nanozymes with specifically improved peroxidase-like activity for immunoassay. Chinese Chemical Letters, 2025, 36(4): 110096-. doi: 10.1016/j.cclet.2024.110096

    17. [17]

      Fan ChenXiaoyu ZhaoWeihang MiaoYingying LiYe YuanLingling Chu . Regio- and enantioselective hydrofluorination of internal alkenes via nickel-catalyzed hydrogen atom transfer. Chinese Chemical Letters, 2025, 36(5): 110239-. doi: 10.1016/j.cclet.2024.110239

    18. [18]

      Hui YangGuangxun ZhangYueyao SunHuijie ZhouHuan Pang . Bimetallic zeolitic imidazolate framework derived hollow layered double hydroxide with tailorable interlayer spacing for nickel-zinc batteries. Chinese Chemical Letters, 2025, 36(6): 110016-. doi: 10.1016/j.cclet.2024.110016

    19. [19]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    20. [20]

      Ke ZhangSheng ZuoPengyuan YouTong RuFen-Er Chen . Palladium-catalyzed stereoselective decarboxylative [4 + 2] cyclization of 2-methylidenetrimethylene carbonates with pyrrolidone-derived enones: Straightforward access to chiral tetrahydropyran-fused spiro-pyrrolidine-2,3-diones. Chinese Chemical Letters, 2024, 35(6): 109157-. doi: 10.1016/j.cclet.2023.109157

Metrics
  • PDF Downloads(7)
  • Abstract views(719)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return