Citation: LI Chang-lun, WANG Yong-gang, LIN Xiong-chao, TIAN Zhen, WU Xin, YANG Yuan-ping, ZHANG Hai-yong, XU De-ping. Influence of inherent minerals on CO2 gasification of a lignite with high ash content[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 780-788. shu

Influence of inherent minerals on CO2 gasification of a lignite with high ash content

  • Corresponding author: WANG Yong-gang, wyg1960@126.com
  • Received Date: 13 February 2017
    Revised Date: 7 May 2017

    Fund Project: the Plan of National Science and Technology Support 2012BAA04B02the National Natural Science Foundation of China 21406261

Figures(9)

  • Lignite samples with different ash contents and mineral composition were prepared by dry separation and acid washing. A drop tube reactor and thermogravimetric analyzer were used to study effect of inherent minerals on CO2 gasification reaction of lignite at 1 000-1 200 ℃. The results show that the inherent minerals have positive effects on gasification, which are temperature sensitive. At lower gasification temperature (1 000 ℃) the inherent minerals can improve carbon conversion indirectly by obstructing the carbon structure order of nascent char. At higher temperatures (1 100-1 200 ℃)the inherent minerals can improve carbon conversion by catalyzing nascent char gasification directly. The alkaline index is not suitable for characterizing role of the inherent minerals of lignite in this case. Ca leads to the difference in catalytic activity of the inherent minerals where the most active form is carboxylate. Various catalytic mechanisms are the root cause of different catalytic activity of Ca in different chemical forms. Ca in the form of carboxylate can reduce the activation energy of coal/char gasification reaction, while CaO only promotes the apparent frequency factor.
  • 加载中
    1. [1]

      WANG Fu-chen, YU Gang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, LIANG Qin-feng. Research and development of large-scale coal gasification technology[J]. Chem Ind Eng Prog, 2009,28(2):173-180.  

    2. [2]

      DAI He-wu, DU Ming-hua, XIE Ke-yu, WANG Wei-li. Low ash lignite resources in China and its optimization and utilization[J]. China Coal, 2001,27(2):14-18.  

    3. [3]

      CORELLA J, TOLEDO J M, MOLINA G. Steam gasification of coal at low-medium (600-800 degrees C) temperature with simultaneous CO2 capture in fluidized bed at atmospheric pressure:The effect of inorganic species. 1. Literature review and comments[J]. Ind Eng Chem Res, 2006,45(18):6137-6146. doi: 10.1021/ie0602658

    4. [4]

      QUYN D M, WU H, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003,82(5):587-593. doi: 10.1016/S0016-2361(02)00323-X

    5. [5]

      ZHANG F, XU D P, WANG Y G, WANG Y, GAO Y, POPA T, FAN M H. Catalytic CO2 gasification of a Powder River Basin coal[J]. Fuel Process Technol, 2015,130:107-116. doi: 10.1016/j.fuproc.2014.09.028

    6. [6]

      ZHANG F, XU D, WANG Y, ARGYLE M D, FAN M. CO2 gasification of Powder River Basin coal catalyzed by a cost-effective and environmentally friendly iron catalyst[J]. Appl Energy, 2015,145:295-305. doi: 10.1016/j.apenergy.2015.01.098

    7. [7]

      LI Y, YANG H P, HU J H, WANG X H, CHEN H P. Effect of catalysts on the reactivity and structure evolution of char in petroleum coke steam gasification[J]. Fuel, 2014,117:1174-1180. doi: 10.1016/j.fuel.2013.08.066

    8. [8]

      WANG Y, ZHU S, GAO M, YANG Z, YAN L, BAI Y, LI F. A study of char gasification in H2O and CO2 mixtures:Role of inherent minerals in the coal[J]. Fuel Process Technol, 2016,141(part 1):9-15.  

    9. [9]

      BENSON S A, HOLM P L. Comparison of inorganic constituents in three low-rank coals[J]. Ind Eng Chen Prod Res Dev, 1985,24(1):145-149. doi: 10.1021/i300017a027

    10. [10]

      SKODRAS G, SAKELLAROPOULOS G P. Mineral matter effects in lignite gasification[J]. Fuel Process Technol, 2002,77:151-158.  

    11. [11]

      BAI Jin, LI Wen, LI Chun-zhu, BAI Zong-qing, LI Bao-qing. Influence of mineral mater on high temeperture of coal char[J]. J Fuel Chem Technol, 2009,37(2):134-138.  

    12. [12]

      SAKAWA M, SAKURAI Y, HARA Y. Influence of coal characteristics on CO2 gasification[J]. Fuel, 1982,61(8):717-720. doi: 10.1016/0016-2361(82)90245-9

    13. [13]

      HATTINGH B B, EVERSON R C, NEOMAGUS H W J P, BUNT J R. Assessing the catalytic effect of coal ash constituents on the CO2 gasification rate of high ash, South African coal[J]. Fuel Process Technol, 2011,92(10):2048-2054. doi: 10.1016/j.fuproc.2011.06.003

    14. [14]

      LI X, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006,85(10/11):1518-1525.  

    15. [15]

      QUYN D M, WU H W, HAYASHI J I, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅳ. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel, 2003,82(5):587-593. doi: 10.1016/S0016-2361(02)00323-X

    16. [16]

      AND S M, SRIVASTAVA S K. Minerals transformations in northeastern region coals of india on heat treatment[J]. Energy Fuels, 2006,20(3):1089-1096. doi: 10.1021/ef050155y

    17. [17]

      BAI J, LI W, LI B. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere[J]. Fuel, 2008,87(4/5):583-591.  

    18. [18]

      LIN X, WANG C, IDETA K, MIYAWAKI J, NISHIYAMA Y, WANG Y, YOON S, MOCHIDA I. Insights into the functional group transformation of a Chinese brown coal during slow pyrolysis by combining various experiments[J]. Fuel, 2014,118:257-264. doi: 10.1016/j.fuel.2013.10.081

    19. [19]

      SUN Jia-liang, CHEN Xu-jun, WANG Fang, LIN Xiong-chao, WANG Yong-gang. Effect of oxygen on the structure and reactivity of char during steam gasificaiton of Shengli brown coal[J]. J Fuel Chem Technol, 2015,43(7):769-778.  

    20. [20]

      TANNER J, KABIR K B, MULLER M, BHATTACHARYA S. Low temperature entrained flow pyrolysis and gasification of a Victorian brown coal[J]. Fuel, 2015,154(6):107-113.  

    21. [21]

      MIURA K, HASHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity[J]. Fuel, 1989,68(11):1461-1475. doi: 10.1016/0016-2361(89)90046-X

    22. [22]

      LI X J, HAYASHI J I, LI C Z. FT-Raman spectroscopic study of the evolution of char structure during the pyrolysis of a Victorian brown coal[J]. Fuel, 2006,85(12):1700-1707.  

    23. [23]

      BENSON S A, HOLM P L. Comparison of inorganic constituents in three low-rank coals[J]. Ind Eng Chen Prod Res Dev, 1985,24(1):145-149. doi: 10.1021/i300017a027

    24. [24]

      ZHANG L, KAJITANI S, UMEMOTO S, WANG S, QUYN D, SONG Y, LI T T, ZHANG S, DONG L, LI C Z. Changes in nascent char structure during the gasification of low-rank coals in CO2[J]. Fuel, 2015,158:711-718. doi: 10.1016/j.fuel.2015.06.014

    25. [25]

      LI C, YANG S, CHEN X, LIN X, WANG Y. The characteristic of Shengli brown coal fractions from heavy medium separation and its influence on CO2 gasification[J]. Fuel Process Technol, 2017,155:232-237. doi: 10.1016/j.fuproc.2016.06.041

    26. [26]

      TAY H L, KAJITANI S, WANG S, LI C Z. A preliminary Raman spectroscopic perspective for the roles of catalysts during char gasification[J]. Fuel, 2014,121:165-172. doi: 10.1016/j.fuel.2013.12.030

    27. [27]

      LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. Fuel, 2007,86(12):1664-1683.  

    28. [28]

      TANG Jia, WANG Qin-hui, ZHANG Rui, SHI Zheng-lun, CEN Ke-fa. Effect of specific surface area and ash content on the mechanisms of bituminous coal char gasification[J]. Proc CSEE, 2015,35(20):5244-5250.  

    29. [29]

      OHTSUKA Y, ASAMI K. Highly active catalysts from inexpensive raw materials for coal gasification[J]. Catal Today, 1997,39(1/2):111-125.  

    30. [30]

      JIANG Ming-quan. The study on alkali catalyzed gasification of coal char:Behaviour of hydrogen produciton and performance of the catalysts[D]. Shanghai:East China University of Science and Technology, 2013.

    31. [31]

      RADOVIC L R. Catalytic coal gasification:Use of calcium versus potassium[J]. Fuel, 1984,63(7):1028-1030. doi: 10.1016/0016-2361(84)90329-6

    32. [32]

      GOMEZ A, MAHINPEY N. A new method to calculate kinetic parameters independent of the kinetic model:Insights on CO2 and steam gasification[J]. Chem Eng Res Des, 2015,95:346-357. doi: 10.1016/j.cherd.2014.11.012

  • 加载中
    1. [1]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    2. [2]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    3. [3]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    4. [4]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    5. [5]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    6. [6]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    7. [7]

      Xianghai Song Xiaoying Liu Zhixiang Ren Xiang Liu Mei Wang Yuanfeng Wu Weiqiang Zhou Zhi Zhu Pengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055

    8. [8]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    9. [9]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    10. [10]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    11. [11]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    12. [12]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    13. [13]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    14. [14]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    15. [15]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    16. [16]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    17. [17]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    18. [18]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    19. [19]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    20. [20]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

Metrics
  • PDF Downloads(0)
  • Abstract views(1274)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return