Citation: FU Chang-liang, WANG Li-ping, WANG Shao-peng, WANG Dong-jiao, ZHAO Ya-wen, MEI Meng-di. Preparation and properties of Ni/KIT-6 catalysts modified with different metals for methanation of CO2[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 476-482. shu

Preparation and properties of Ni/KIT-6 catalysts modified with different metals for methanation of CO2

  • Corresponding author: FU Chang-liang, fuchangliang@163.com
  • Received Date: 7 January 2020
    Revised Date: 27 February 2020

    Fund Project: The project was supported by the Henan Science and Technology Open Cooperation Project (172106000067) and the Funding Scheme for Young Key Teachers in Colleges and Universities of Henan Province (2013GGJS-297)the Funding Scheme for Young Key Teachers in Colleges and Universities of Henan Province 2013GGJS-297the Henan Science and Technology Open Cooperation Project 172106000067

Figures(5)

  • Ni/KIT-6 catalysts modified by Mg, Ce, V and La for CO2 methanation were prepared by co-impregnation method.The catalysts were characterized by N2 absorption-desorption, XRD, H2-TPD and TEM.The effects of different promoters on structure and properties of Ni/KIT-6 catalysts were investigated. The results show that the dispersity of Ni and promoters are very high. The dispersion of Ni particles depends primarily on the confinement effect of the well-ordered mesoporous structure of KIT-6, and is not affected by the addition of metal promoters. The addition of promoters does not affect the surface morphology of Ni/KIT-6 catalyst, but has effects on the difficulty and reduction degree of Ni reduction. Among the metal promoters studied, V addition makes the reduction of NiO in the catalyst easily and results in a high reduction degree. The oxide of V can change the reaction mechanism of CO2 methanation, resulting in the best methanation performance. Compared with the unmodified catalyst, the catalyst modified by V makes the conversion of CO2 and the selectivity of CH4 increase by 3.7% and 11.6% respectively. The selectivity of CH4 is 100%.
  • 加载中
    1. [1]

      QIU M, T AO, H L, LI Y, ZHANG Y F. Insight into the mechanism of CO2 and CO methanation over Cu(100) and Co-modified Cu(100) surfaces:A DFT study[J]. Appl Surf Sci, 2019,495143457. doi: 10.1016/j.apsusc.2019.07.199

    2. [2]

      FALBO L, VISCONTI C G, LIETTI L, SZANYI J. The effect of CO on CO2 methanation over Ru/Al2O3 catalysts:A combined steady-state reactivity and transient DRIFT spectroscopy study[J]. Appl Catal B:Environ, 2019,256.

    3. [3]

      CABRERO-ANTONINO M, REMIRO-BUENAMAÑANA S, SOUTO M, VALDIVIA A G, CHOQUESILLO-LAZARTE D, NAVALÓN S, RODRIGUEZ-DIÉGUEZ A, MINGUEZ ESPALLARGAS G, GARCÍA H. Design of cost-efficient and photocatalytically active Zn-based MOFs decorated with Cu2O nanoparticles for CO2 methanation[J]. Catal Commun, 2019,55(73):10932-10935.  

    4. [4]

      HUANG J, LI X, WANG X, FANG X ZH, WANG H M, XU X L. New insights into CO2 methanation mechanisms on Ni/MgO catalysts by DFT calculations:Elucidating Ni and MgO roles and support effects[J]. J CO2 Util, 2019,33:55-63. doi: 10.1016/j.jcou.2019.04.022

    5. [5]

      ZHANG Zhi-lei. Preparation and catalytic performance of nickel-based zirconia catalysts for carbon dioxide methanation[D]. Taiyuan: Taiyuan University of Technology, 2019. 

    6. [6]

      SUN Yi-qing, JIN Bao-sheng, DONG Xin-xin, ZHANG Wen-jie, WANG Jin-de. Cox methanation over nickel-based catalysts supported on ZrO2-Al2O3 composite[J]. Chem Ind Eng Prog, 2019,38(7):3176-3184.  

    7. [7]

      HAN Yang. Study on Ni-based catalyst for methanation of syngas[D]. Shihezi: Shihezi University, 2017. 

    8. [8]

      LU Huai-liang. Preparation of catalysts of Ni-Mn(La, Ce, Fe, Co)/ZrO2-montmorillonite nanocomposites and study on their methanation performance[D]. Hohhot: Inner Mongolia University, 2014. 

    9. [9]

      ZHI G J, GUO X N, WANG Y Y, JIN G Q. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011,16(1):56-59. doi: 10.1016/j.catcom.2011.08.037

    10. [10]

      WANG W, CHU W, WANG N, YANG W, JIANG C F. Mesoporous nickel catalyst supported on multi-walled carbon nanotubes for carbon dioxide methanation[J]. Int J Hydrogen Energy, 2016,41(2):967-975.  

    11. [11]

      GUO M, LU G X. The effect of impregnation strategy on structural characters and CO2 methanation properties over MgO modified Ni/SiO2catalysts[J]. Catal Commun, 2014,54:55-60. doi: 10.1016/j.catcom.2014.05.022

    12. [12]

      LU X P, GU F N, LIU Q, GAO J J, LIU Y J, LI H F, JIA L H, ZHONG Z Y, SU F B. VOx promoted Ni catalysts supported on the modified bentonite for CO and CO2 methanation[J]. Fuel Process Technol, 2015,135:34-46. doi: 10.1016/j.fuproc.2014.10.009

    13. [13]

      CHENG Kai, BAI Long-lu, PIAO Wen-xiang. Research progress of mesoporous material KIT-6[J]. Chin Polym Bull, 2018(7):58-68.  

    14. [14]

      MEI De-jun. Preparation, modification and CO2 adsorption of Beta/KIT-6 micro/mesoporous composite molecular sieves[D]. Guilin: Guilin University of Technology, 2019. 

    15. [15]

      LI Bai-tao, LUO Xin, HUANG Jing, WANG Xiu-jun, LIANG Zhen-xing. One-pot synthesis of ordered mesoporous Cu-KIT-6 and its improved catalytic behavior for the epoxidation of styrene:Effects of the pH value of the initial gel[J]. Chin J Catal, 2017,38(3):518-528.  

    16. [16]

      CAO Hong-xia. Study on preparation, Characterization and performance of catalyst for CO/CO2 methanation[D]. Xuzhou: China University of Mining and Technology, 2018.

    17. [17]

      HUANG jin. CO2 methanation mechanismon cubic-ZrO2 and MgO supported Ni catalysts: A combined theoretical and experimental study[D]. Nanchang: Nanchang University, 2019.

    18. [18]

      LU B W, KAWAMOTO K. Direct synthesis of highly loaded and well-dispersed NiO/SBA-15 for producer gas conversion[J]. RSC Adv, 2012,2(17):6800-6805. doi: 10.1039/c2ra20344h

    19. [19]

      QIU S B, ZHANG X, LIU Q Y, WANG T J, ZHANG Q, MA L L. A simple method to prepare highly active and dispersed Ni/MCM-41 catalysts by co-impregnation[J]. Catal Commun, 2013,42(23):73-78.  

    20. [20]

      ZHANG Q, WANG T J, LI B, JIANG T, MA L L, ZHANG X H, LIU Q Y. Aqueous phase reforming of sorbitol to bio-gasoline over Ni/HZSM-5 catalysts[J]. Appl Energy, 2012,97(3):509-513.  

  • 加载中
    1. [1]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    5. [5]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    8. [8]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    9. [9]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    10. [10]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    11. [11]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    12. [12]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    13. [13]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    14. [14]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    15. [15]

      Jingzhao Cheng Shiyu Gao Bei Cheng Kai Yang Wang Wang Shaowen Cao . 4-氨基-1H-咪唑-5-甲腈修饰供体-受体型氮化碳光催化剂的构建及其高效光催化产氢研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-. doi: 10.3866/PKU.WHXB202406026

    16. [16]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    17. [17]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    18. [18]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    19. [19]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

Metrics
  • PDF Downloads(5)
  • Abstract views(900)
  • HTML views(228)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return