Citation: GUO Yuan-yuan, HOU Bo, WANG Jun-gang, JIA Li-tao, LI De-bao. Preparation of ZrO2 modified Al2O3 nano-sheets supported cobalt catalyst and its performance in Fischer-Tropsch synthesis[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 540-548. shu

Preparation of ZrO2 modified Al2O3 nano-sheets supported cobalt catalyst and its performance in Fischer-Tropsch synthesis

  • Corresponding author: HOU Bo, houbo@sxicc.ac.cn LI De-bao, dbli@sxicc.ac.cn
  • Received Date: 16 January 2019
    Revised Date: 3 March 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21872162, U1710104, 21703273, 21706271), the "Transformational Technologies for Clean Energy and Demonstration" and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA 21020202)Strategic Priority Research Program of the Chinese Academy of Sciences XDA 21020202the National Natural Science Foundation of China 21872162the National Natural Science Foundation of China 21706271the National Natural Science Foundation of China U1710104the National Natural Science Foundation of China 21703273

Figures(9)

  • Al2O3 nano-sheet (Al2O3-CN) was synthesized under hydrothermal condition. The cobalt-based catalyst of 20% (mass fraction) was prepared by impregnation method and applied to Fischer-Tropsch synthesis. The Al2O3-CN (226 m2/g) and commercial alumina (Al2O3-C, 249 m2/g) have similar specific surface area, but Al2O3-CN has more narrow pore size distribution. Compared with Co/Al2O3-C catalyst, Co/Al2O3-CN catalyst showed higher reduction degree and more uniform cobalt particle size distribution after impregnation. Thus, Co/Al2O3-CN catalyst exhibited higher CO conversion and lower methane selectivity. In order to further improve the catalytic performance of Co/Al2O3-CN, Al2O3-CN was modified with ZrO2. The characterization results showed that with the increase of ZrO2, the specific surface of Al2O3-CN did not change significantly, and the pore volume and pore diameter increased. The cobalt particle size decreased and the number of active sites increased. Under the same reaction conditions, the CO conversion rate of catalysts modifield by ZrO2 was farther improved and selectivity of methane was decreased.
  • 加载中
    1. [1]

      MUNNIK P, DE JONGH P E, DE JONG K P. Recent developments in the synthesis of supported catalysts[J]. Chem Rev, 2015,115(4):6687-6718.  

    2. [2]

      SUN Yu-han, CHEN Jian-gang, WANG Jun-gang, JIA Li-tao, HOU Bo, LI De-bao, ZHANG Juan. The development of cobalt-based catalysts for fischer-tropsch synthesis[J]. Chin J Catal, 2010,31(8):919-927.  

    3. [3]

      KHODAKOV A Y, CHU W, FONGARLAND P. Advances in the development of novel cobalt fischer-tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels[J]. Chem Rev, 2007,107(5):1692-1744. doi: 10.1021/cr050972v

    4. [4]

      STORSÆTER S, TØTDAL B, WALMSLEY J C, TANEM B S, HOLMEN A. Characterization of alumina-, silica-, and titania-supported cobalt Fischer-Tropsch catalysts[J]. J Catal, 2005,236(1):139-152.  

    5. [5]

      LI Jin-lin, WAN You-jun, ZHANG Yu-hua, XIONG Hai-feng. Studies on the reduction process of the supported cobalt catalysis for Fischer-Tropsch Synthesis[J]. J South-Cent Univ Nat(Nat Sci Ed), 2007,26(2):1-6. doi: 10.3969/j.issn.1672-4321.2007.02.001

    6. [6]

      LI Jia-bo, LIN Quan. Supporter modification of Fischer-Tropsch cobalt catalyst[J]. Clean Coal Technol, 2015,21(1):65-68.  

    7. [7]

      BAO A, LIEW K Y, LI J L. Fischer-Tropsch synthesis on CaO-promoted Co/Al2O3 catalysts[J]. J Mol Catal A:Chem, 2009,304(1/2):47-51.  

    8. [8]

      YUAN Q, YIN A X, LUO C, SUN L D, ZHANG Y W, DUAN W T, LIU H C, YAN C H. Facile synthesis for ordered mesoporous γ-aluminas with high thermal stability[J]. J Am Chem Soc, 2008,130(11):3465-3472. doi: 10.1021/ja0764308

    9. [9]

      LI X, HAN D Z, XU Y Q, LIU X M, YAN Z F. Bimodal mesoporous γ-Al2O3:A promising support for CoMo-based catalyst in hydrodesulfurization of 4, 6-DMDBT[J]. Mater Lett, 2011,65(12):1765-1767. doi: 10.1016/j.matlet.2011.03.037

    10. [10]

      MARTÍNEZ A, PRIETO G, ROLLAN J. Nanofibrous γ-Al2O3 as support for cobased Fischer-Tropsch catalysts:Pondering the relevance of diffusional and dispersion effects on catalytic performance[J]. J Catal, 2009,263(2):292-305.

    11. [11]

      LIU C C, LI J L, ZHANG Y H, CHEN S F, ZHU J J, LIEW K Y. Fischer-Tropsch synthesis over cobalt catalysts supported on nanostructured alumina with various morphologies[J]. J Mol Catal A:Chem, 2012,363/364:335-342. doi: 10.1016/j.molcata.2012.07.009

    12. [12]

      WANG W W, ZHOU J B, ZHANG Z, YU J G, CAI W Q. Different surfactants-assisted hydrothermal synthesis of hierarchical γ-Al2O3 and its adsorption performances for parachlorophenol[J]. Chem Eng J, 2013,233:168-175. doi: 10.1016/j.cej.2013.08.029

    13. [13]

      NABAHO D, NIEMANTSVERDRIET J W, CLAEYS M, STEEN E. Hydrogen spillover in the Fischer-Tropsch synthesis:An analysis of platinum as a promoter for cobalt-alumina catalysts[J]. Catal Today, 2016,261:17-27. doi: 10.1016/j.cattod.2015.08.050

    14. [14]

      JACOBS G, CHANRY J A, PATTERSON P M, DAS T K, DAVIS B H. Fischer-Tropsch synthesis:Study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LⅢ edges and XPS[J]. Appl Catal A:Gen, 2004,264(2):203-212. doi: 10.1016/j.apcata.2003.12.049

    15. [15]

      JONGSOMJIT B, PANPRANOT J, GOODWIN JR J G. Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts[J]. J Catal, 2003,215(1):66-77.  

    16. [16]

      ZHANG Y H, XIONG H F, LIEW K Y, LI J L. Effect of magnesia on alumina-supported cobalt Fischer-Tropsch synthesis catalysts[J]. J Mol Catal A:Chem, 2005,237(1/2):172-181.  

    17. [17]

      DAI X P, YU C C, SHEN S K. Promotion effect of ceria on Fischer-Tropsch synthesis performance over Co/Al2O3 catalyst[J]. Chin J Catal, 2001,22:104-108.  

    18. [18]

      MA C L, CHANG Y L, YE W C, DUAN L Y, WANG C M. Hexagon γ-alumina nanosheets produced with the assistance of supercritical ethanol drying[J]. J Supercrit Fluids, 2008,45:112-120. doi: 10.1016/j.supflu.2008.01.001

    19. [19]

      LI G C, GUAN L L, LIU Y Q, LIU C G. Template-free solvothermal synthesis of 3D hierarchical nanostructured boehmite assembled by nanosheets[J]. J Phys Chem Solids, 2012,73:1055-1060. doi: 10.1016/j.jpcs.2012.04.014

    20. [20]

      YANG Y F, JIA L T, MENG Y, HOU B, LI D B, SUN Y H. Fischer-Tropsch synthesis over ordered mesoporous carbon supported cobalt catalysts:The role of amount of carbon precursor in catalytic performance[J]. Catal Lett, 2012,142(2):195-204.  

    21. [21]

      KOGELBAUER A, GOODWIN J G, QUKACI R. Ruthenium promotion of Co/Al2O3 Fischer-Tropsch catalysts[J]. J Catal, 1996,160(1):125-133.  

    22. [22]

      SEXTON B A, HUGHES A E, TURNEY T W. An XPS and TPR study of the reduction of promoted cobalt-kieselguhr Fischer-Tropsch catalysts[J]. J Catal, 1986,97(2):390-406.  

    23. [23]

      XIONG H F, ZHANG Y H, LIEW K Y, LI J L. Catalytic performance of zirconium-modified Co/Al2O3for Fischer-Tropsch synthesis[J]. J Mol Catal A:Chem, 2005,231(1/2):145-151.  

    24. [24]

      CHU W, CHERNAVSKⅡ P A, GENGEMBRE L, PANKINA G A, FONGARLAND P, KHODAKOV A Y. Cobalt species in promoted cobalt alumina-supported Fischer-Tropsch catalysts[J]. J Catal, 2007,252(2):215-230. doi: 10.1016/j.jcat.2007.09.018

    25. [25]

      BEZEMER G L, BITTER J H, KUIPERS H P C E, OOSTERBEEK H, HOLEWIJN J E, XU X D, KAPTEIJN F, JOS VAN DILEN A, DE JONG K P. Cobalt particle size effects in the fischer-tropsch reaction studied with carbon nanofiber supported catalysts[J]. J Am Chem Soc, 2006,128(12):3956-3964. doi: 10.1021/ja058282w

    26. [26]

      DEN BREEJEN J P, RADSTAKE P B, BEZEMER G L, BITTER J H, FRØSRTH V, HOLMEN A, DE JONG K P. On the origin of the cobalt particle size effects in Fischer-Tropsch catalysis[J]. J Am Chem Soc, 2009,131(20):7197-7203. doi: 10.1021/ja901006x

    27. [27]

      JOHNSON G R, BELL A T. Role of ZrO2 in promoting the activity and selectivity of Co-based Fischer-Tropsch synthesis catalysts[J]. ACS Catal, 2016,6(1):100-114.  

  • 加载中
    1. [1]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    3. [3]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    4. [4]

      Weihan Zhang Menglu Wang Ankang Jia Wei Deng Shuxing Bai . 表面硫物种对钯-硫纳米片加氢性能的影响. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-. doi: 10.3866/PKU.WHXB202309043

    5. [5]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    6. [6]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    7. [7]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    8. [8]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    9. [9]

      Pengyu Dong Yue Jiang Zhengchi Yang Licheng Liu Gu Li Xinyang Wen Zhen Wang Xinbo Shi Guofu Zhou Jun-Ming Liu Jinwei Gao . NbSe2纳米片优化钙钛矿太阳能电池的埋底界面. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-. doi: 10.3866/PKU.WHXB202407025

    10. [10]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    11. [11]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    12. [12]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    13. [13]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    14. [14]

      Qin Li Huihui Zhang Huajun Gu Yuanyuan Cui Ruihua Gao Wei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 100031-. doi: 10.3866/PKU.WHXB202402016

    15. [15]

      Heng Chen Longhui Nie Kai Xu Yiqiong Yang Caihong Fang . 两步焙烧法制备大比表面积和结晶性增强超薄g-C3N4纳米片及其高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Mengfei He Chao Chen Yue Tang Si Meng Zunfa Wang Liyu Wang Jiabao Xing Xinyu Zhang Jiahui Huang Jiangbo Lu Hongmei Jing Xiangyu Liu Hua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 100016-. doi: 10.3866/PKU.WHXB202310029

    17. [17]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    20. [20]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

Metrics
  • PDF Downloads(6)
  • Abstract views(619)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return