Citation: XU Xiang-fu, CHEN Jia, LAI Guo-xia, LI Tian-le, XU Shi-zhen, CHEN Xing-yuan, ZHU Wei-ling. Theoretical study on enhancing the monolayer MoS2 photocatalytic water splitting with alloying and stress[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 321-327. shu

Theoretical study on enhancing the monolayer MoS2 photocatalytic water splitting with alloying and stress

  • Corresponding author: ZHU Wei-ling, mmzhuweiling@163.com
  • Received Date: 22 October 2019
    Revised Date: 10 January 2020

    Fund Project: National Natural Science Foundation of Guangdong Province 2017A030307008The project was supported by the National Natural Science Foundation of China 11547201Department of Education of Guangdong Province 2018KTSCX144The project was supported by the National Natural Science Foundation of China (11547201), National Natural Science Foundation of Guangdong Province (2017A030307008) and Department of Education of Guangdong Province (2018KTSCX144)

Figures(4)

  • Based on the density functional theory, the photocatalytic water splitting reaction has been studied over the monolayer MoS2 alloying with MoSe2, MoTe2 and WS2 under stress condition. The calculated results show that the monolayer MoS2 alloyed with MoSe2, MoTe2 and MoWS2 under the compressive stress condition can increase the band gap and improve the position of CBM (conduction band minimum) band edge to enhance the efficiency of photocatalytic water splitting. The calculated energy band and density of states show that the alloy elements form energy band instead of isolated energy level, which has little effect on carrier life.
  • 加载中
    1. [1]

      MARTHA S, CHANDRA SAHOO P, PARIDA K M. An overview on visible light responsive metal oxide based photocatalysts for hydrogen energy production[J]. RSC Adv, 2015,5(76):61535-61553. doi: 10.1039/C5RA11682A

    2. [2]

      WANG F, DI VALENTIN C, PACCHIONI G. Doping of WO3 for photocatalytic water splitting:Hints from density functional theory[J]. J Phys Chem C, 2012,116(16):8901-8909. doi: 10.1021/jp300867j

    3. [3]

      LI Y, LI Y L, ARAUJO C M, LUO W, AHUJIA R. Single-layer MoS2 as an efficient photocatalyst[J]. Catal Sci Technol, 2013,3(9)2214. doi: 10.1039/c3cy00207a

    4. [4]

      KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting[J]. Chem Soc Rev, 2009,38(1):253-278. doi: 10.1039/B800489G

    5. [5]

      SPLENDIANI A, SUN L, ZHANG Y, LI T S. Emerging photoluminescence in monolayer MoS2[J]. Nano Lett, 2010(10):1271-1275.  

    6. [6]

      JARAMILLO T F, JORGENSEN K P, BONDE J, NIELSEN J H, HORCH S, CHORKENDORFF I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts[J]. Science, 2007,317(5834):100-102. doi: 10.1126/science.1141483

    7. [7]

      HU W, LIN L, ZHANG R, YANG C, YANG J L. Highly Efficient photocatalytic water splitting over edge-modified phosphorene nanoribbons[J]. J Am Chem Soc, 2017,139(43):15429-15436. doi: 10.1021/jacs.7b08474

    8. [8]

      ZHUANG H L, HENNIG R G. Single-layer group-Ⅲ monochalcogenide photocatalysts for water splitting[J]. Chem Mater, 2013,25(15):3232-3238. doi: 10.1021/cm401661x

    9. [9]

      DOLUI K, RUNGGER I, DAS PEMMARAJU C, SANVITO S. Possible doping strategies for MoS2 monolayers:An ab initio study[J]. Phys Rev B, 2013,88(7)075420. doi: 10.1103/PhysRevB.88.075420

    10. [10]

      MAK K F, LEE C, HONE J, SHAN J, HEINZ T F. Atomically thin MoS2:A new direct-gap semiconductor[J]. Phys Rev Lett, 2010,105(13)136805. doi: 10.1103/PhysRevLett.105.136805

    11. [11]

      HINNEMANN B, MOSES P G, BONDE J, JØRGENSEN K P, NIELSEN J H, HORCH S, CHORKENDORFF I, NØRSKOV J. Biomimetic hydrogen evolution:MoS2 nanoparticles as catalyst for hydrogen evolution[J]. J Am Chem Soc, 2005,127(15):5308-5309. doi: 10.1021/ja0504690

    12. [12]

      YANG L, CUI X, ZHANG J, WANG K, SHEN M, ZENG S S, DAYEH S A, FENG L, XIANG B. Lattice strain effects on the optical properties of MoS2 nanosheets[J]. Sci Rep, 2015,4(1)5649. doi: 10.1038/srep05649

    13. [13]

      MA Y, DAI Y, GUO M, NIU C W, ZHU Y T, HUANG B B. Evidence of the existence of magnetism in pristine VX2 monolayers (X=S, Se) and their strain-induced tunable magnetic properties[J]. ACS Nano, 2012,6(2):1695-1701. doi: 10.1021/nn204667z

    14. [14]

      LEE J H, JANG W S, HAN S W, BAIK H K. Efficient hydrogen evolution by mechanically strained MoS2 nanosheets[J]. Langmuir, 2014,30(32):9866-9873. doi: 10.1021/la501349k

    15. [15]

      KANG J, TONGAY S, ZHOU J, LI J B, WU J Q. Band offsets and heterostructures of two-dimensional semiconductors[J]. Appl Phys Lett, 2013,102(1)012111. doi: 10.1063/1.4774090

    16. [16]

      YUE Q, CHANG S, QIN S, LI J B. Functionalization of monolayer MoS2 by substitutional doping:A first-principles study[J]. Phys Lett A, 2013,377(19/20):1362-1367.  

    17. [17]

      KIRAN V, MUKHERJEE D, JENJETI R N, SAMPATH S. Active guests in the MoS2/MoSe2 host lattice:Efficient hydrogen evolution using few-layer alloys of MoS2(1-x) Se2x[J]. Nanoscale, 2014,6(21):12856-12863. doi: 10.1039/C4NR03716B

    18. [18]

      LIN Z, THEE M T, ELÍAS A L, FENG S, ZHOU C J, FUJISAWA K, PEREA-LÓPEZ N, CAROZO V, TERRONES H, TERRONES M. Facile synthesis of MoS2 and Mox W1-xS2 triangular monolayers[J]. Apl Mater, 2014,2(9)092514. doi: 10.1063/1.4895469

    19. [19]

      YANG H, ZHANG T, ZHU H, ZHANG M M, WU W W, DU M L. Synthesis of a MoS2(1-x)Se2x ternary alloy on carbon nanofibers as the high efficient water splitting electrocatalyst[J]. Int J Hydrogen Energy, 2017,42(4):1912-1918. doi: 10.1016/j.ijhydene.2016.10.075

    20. [20]

      ZHUANG H L, HENNIG R G. Computational search for single-layer transition-metal dichalcogenide photocatalysts[J]. J Phys Chem C, 2013,117(40):20440-20445. doi: 10.1021/jp405808a

    21. [21]

      LI C, FAN B, LI W, WEN W L, LIU Y, WANG T, SHENG K, YIN Y. Bandgap engineering of monolayer MoS2 under strain:A DFT study[J]. J Korean Phys Soc, 2015,66(11):1789-1793. doi: 10.3938/jkps.66.1789

    22. [22]

      LI T. Ideal strength and phonon instability in single-layer MoS2[J]. Phys Rev B, 2012,85(23)235407. doi: 10.1103/PhysRevB.85.235407

    23. [23]

      JOENSEN P, CROZIER E D, ALBERDING N, FRINDT R F. A study of single-layer and restacked MoS2 by X-ray diffraction and X-ray absorption spectroscopy[J]. J Phys C:Solid State Phys, 1987,20(26):4043-4053. doi: 10.1088/0022-3719/20/26/009

    24. [24]

      KONG L J, LIU G H, QIANG L. Electronic and optical properties of O-doped monolayer MoS2[J]. Comput Mater Sci, 2016,111:416-423. doi: 10.1016/j.commatsci.2015.10.001

    25. [25]

      LI Gang, CHEN Min-qiang, ZHAO Shi-xiong, LI Peng-wei, HU Jie, SANG Sheng-bo, HOU Jing-jing. Effect of Se doping on the electronic band structure and optical absorption properties of single layer MoS2[J]. Acta Phys Chim Sin, 2016,32(12):2905-2912. doi: 10.3866/PKU.WHXB201609201

    26. [26]

      SINGH N, JABBOUR G, SCHWINGENSCHLÖGL U. Optical and photocatalytic properties of two-dimensional MoS2[J]. Eur Phys J B, 2012,85(11)392. doi: 10.1140/epjb/e2012-30449-7

  • 加载中
    1. [1]

      Qin HuLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of Electron Bridge and Activation of MoS2 Inert Basal Planes by Ni Doping for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406024-0. doi: 10.3866/PKU.WHXB202406024

    2. [2]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    3. [3]

      Ruiyun LiuPing WangXuefei WangFeng ChenHuogen Yu . Work-function-engineered Mo 4d electronic structure modulation in Mo2C MXene cocatalyst for efficient photocatalytic H2 evolution. Acta Physico-Chimica Sinica, 2025, 41(11): 100137-0. doi: 10.1016/j.actphy.2025.100137

    4. [4]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    5. [5]

      Xinyu MiaoHao YangJie HeJing WangZhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-0. doi: 10.1016/j.actphy.2025.100051

    6. [6]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    7. [7]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    8. [8]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    9. [9]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    10. [10]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    11. [11]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    12. [12]

      Xian-Rui Meng Qian Chen Mei-Feng Wu Qiang Wu Su-Qin Wang Li-Ping Jin Fan Zhou Ren-Li Ma Jian-Ping Zou . Nano-flowers FeS/MoS2 composites as a peroxymonosulfate activator for efficient p-chlorophenol degradation. Chinese Journal of Structural Chemistry, 2025, 44(3): 100543-100543. doi: 10.1016/j.cjsc.2025.100543

    13. [13]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    14. [14]

      Jiaqi YangXuqiang HaoJiejie JingYuqiang HaoZhiliang Jin . 3D/2D ReSe2/ZnCdS S-scheme photocatalyst with efficient interfacial charge separation for optimized hydrogen production. Acta Physico-Chimica Sinica, 2025, 41(10): 100131-0. doi: 10.1016/j.actphy.2025.100131

    15. [15]

      Jiali LeiJuan WangWenhui ZhangGuohong WangZihui LiangJinmao Li . TiO2/CdIn2S4 S-scheme heterojunction photocatalyst promotes photocatalytic hydrogen evolution coupled vanillyl alcohol oxidation. Acta Physico-Chimica Sinica, 2025, 41(12): 100174-0. doi: 10.1016/j.actphy.2025.100174

    16. [16]

      Xinyu GuoChang LiWenjun DengYi ZhouYan ChenYushuang XuRui Li . Phase engineering and heteroatom incorporation enable defect-rich MoS2 for long life aqueous iron-ion batteries. Chinese Chemical Letters, 2025, 36(3): 109715-. doi: 10.1016/j.cclet.2024.109715

    17. [17]

      Qingwang LIU . MoS2/Ag/g-C3N4 Z-scheme heterojunction: Preparation and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 821-832. doi: 10.11862/CJIC.20240148

    18. [18]

      Yayun ShiCongcong LiuZhijun ZuoXiaowei Yang . Self-assembled ultrathick MoS2 conductive hydrogel membrane via ionic gelation for superior capacitive energy storage. Chinese Chemical Letters, 2025, 36(6): 109772-. doi: 10.1016/j.cclet.2024.109772

    19. [19]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    20. [20]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(7)
  • Abstract views(795)
  • HTML views(70)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return