Citation: ZHAN Hai-juan, SHI Xiao-yan, HUANG Xin, ZHAO Ning. Highly coke-resistant ordered mesoporous Ni/SiC with large surface areas in CO2 reforming of CH4[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 942-948. shu

Highly coke-resistant ordered mesoporous Ni/SiC with large surface areas in CO2 reforming of CH4

  • Corresponding author: HUANG Xin, huangxin@sxicc.ac.cn ZHAO Ning, zhaoning@sxicc.ac.cn
  • Received Date: 16 April 2019
    Revised Date: 12 June 2019

    Fund Project: the Scientific Research Foundation of Higher Education Institutions of Ningxia NGY2017008The project was supported by the Scientific Research Foundation of Higher Education Institutions of Ningxia (NGY2017008)

Figures(9)

  • An ordered mesoporous SiC (SiC-OM) material with high specific surface area (345 m2/g) and narrow pore distribution was prepared by a nanocasting method, and a commercial SiC (49 m2/g, SiC-C) was used as a reference carrier. The Ni/SiC-C and Ni/SiC-OM catalysts were prepared by an incipient wetness impregnation method, and tested in the CO2 reforming of CH4(CRM). The textural properties of fresh and used catalysts were characterized by means of ICP, BET, XRD, H2-TPR, XPS, HRTEM, TG, and Raman. The results suggested the average carbon deposition rate over the Ni/SiC-OM decreased one order of magnitude compared with the Ni/SiC-C during 50 h of CRM reaction, due to the strong interaction between Ni species and SiC-OM support and confinement effect of rigid mesoporous skeleton.
  • 加载中
    1. [1]

      DEVENDRA P, JAMES S. A review of dry (CO2) reforming of methane over noble metal catalysts[J]. Chem Soc Rev, 2014,43(22):7813-7837. doi: 10.1039/C3CS60395D

    2. [2]

      SUN N N, WEN X, WANG F, WEI W, SUN Y H. Effect of pore structure on Ni catalyst for CO2 reforming of CH4[J]. Energy Environ Sci, 2010,3(3):366-369. doi: 10.1039/b925503f

    3. [3]

      HUANG X, XUE G X, WANG C Z, ZHAO N, SUN N N, WEI W, SUN Y H. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane:Effect of Ni embedding and Y2O3 promotion[J]. Catal Sci Technol, 2016,6(2):449-459. doi: 10.1039/C5CY01171J

    4. [4]

      LI S R, GONG J L. Strategies for improving the performance and stability of Ni-based catalysts for reforming reactions[J]. Chem Soc Rev, 2014,43(21):7245-7256. doi: 10.1039/C4CS00223G

    5. [5]

      KAWI S, KATHIRASER Y, NI J, OEMAR U, LI Z W, SAW E T. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane[J]. ChemSusChem, 2015,8(21):3556-3575. doi: 10.1002/cssc.201500390

    6. [6]

      ROSTRUP-NIELSEN J R, HANSEN J H B. CO2 reforming of methane over transition metals[J]. J Catal, 1993,144(1):38-49.  

    7. [7]

      HUANG X, JI C C, WANG C Z, XIAO F K, ZHAO N, SUN N N, WEI W, SUN Y H. Ordered mesoporous CoO-NiO-Al2O3 bimetallic catalysts with dual confinement effects for CO2 reforming of CH4[J]. Catal Today, 2017,281:241-249. doi: 10.1016/j.cattod.2016.02.064

    8. [8]

      KIM J, SUH D J, PARK T, KIM K. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Appl Catal A:Gen, 2000,197(2):191-200. doi: 10.1016/S0926-860X(99)00487-1

    9. [9]

      TIAN H, LI X Y, ZENG L, GONG J L. Recent advances on the design of group Ⅷ base-metal catalysts with encapsulated structures[J]. ACS Catal, 2015,5(8):4959-4977. doi: 10.1021/acscatal.5b01221

    10. [10]

      LI H T, QIU Y, WANG C Z, HUANG X, XIAO T C, ZHAO Y X. Nickel catalysts supported on ordered mesoporous SiC materials for CO2 reforming of methane[J]. Catal Today, 2018,317:76-85. doi: 10.1016/j.cattod.2018.02.038

    11. [11]

      LIU H T, LI S Q, ZHANG S B, WANG J M, WANG J M, ZHOU G J, CHEM G J, CHEM L, WANG X L. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catal Commun, 2008,9(1):51-54.  

    12. [12]

      LIU H T, LI S Q, ZHANG S B, CHEN L, ZHOU G J, WANG J M, WANG X L. Catalytic performance of monolithic foam Ni/SiC catalyst in carbon dioxide reforming of methane to synthesis gas[J]. Catal Lett, 2008,120(1/2):111-115.  

    13. [13]

      GUO Peng-fei, JIN Guo-qiang, GUO Cong-xiu, WANG Ying-yong, TONG Xi-li, GUO Xiang-yun. Effects of Yb2O3 promoter on the performance of Ni/SiC catalysts in CO2 reforming of CH4[J]. J Fuel Chem Technol, 2014,42(6):719-726.  

    14. [14]

      WANG Bing, GUO Cong-xiu, WANG Ying-yong, JIN Guo-qiang, GUO Xiang-yun. Performance of Ni-Smx/SiC catalysts for CO2 reforming of CH4[J]. J Fuel Chem Technol, 2016,44(5):587-596. doi: 10.3969/j.issn.0253-2409.2016.05.011 

    15. [15]

      SHI Y F, MENG Y, CHEN D H, CHENG S J, CHEN P, YANG T F, WAN Y, ZHAO D Y. Highly ordered mesoporous silicon carbide ceramics with large surface areas and high stability[J]. Adv Funct Mater, 2006,16(4):561-567. doi: 10.1002/(ISSN)1616-3028

    16. [16]

      JIN G Q, GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous Mesoporous Mater, 2003,60(1/3):207-212.  

    17. [17]

      WANG C Z, SUN N N, ZHAO N, WEI W, ZHANG J, ZHAO T J, SUN Y H, SUN C G, LIU H, SNAPE C. The properties of individual carbon residuals and their influence on the deactivation of Ni-CaO-ZrO2 catalysts in CH4 dry reforming[J]. ChemCatChem, 2014,6(2):640-648. doi: 10.1002/cctc.v6.2

    18. [18]

      HOFFMANN C, PLATE P, STEINBRUCK A, KASKEL S. Nanoporous silicon carbide as nickel support for the carbon dioxide reforming of methane[J]. Catal Sci Technol, 2015,5(8):4174-4183. doi: 10.1039/C4CY01234H

    19. [19]

      SING K S, EVERETT D H, HAUL R A W, MOSCOU L, PIEROTTI R A, ROUQUÉROL J, SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity[J]. Pure Appl Chem, 1985,57(4):603-619. doi: 10.1351/pac198557040603

    20. [20]

      XU L L, SONG H L, CHOU L J. One-pot synthesis of ordered mesoporous NiO-CaO-Al2O3 composite oxides for catalyzing CO2 reforming of CH4[J]. ACS Catal, 2012,2(7):1331-1342. doi: 10.1021/cs3001072

    21. [21]

      WANG C Z, SUN N N, ZHAO N, WEI W, SUN Y H, SUN C G, LIU H, SNAPE C. Coking and deactivation of a mesoporous Ni-CaO-ZrO2 catalyst in dry reforming of methane:A study under different feeding compositions[J]. Fuel, 2015,143:527-535. doi: 10.1016/j.fuel.2014.11.097

    22. [22]

      HUANG X, JIAO X, LIN M G, WANG K, JIA L T, HOU B, LI D B. Coke distribution determines the lifespan of a hollow Mo/HZSM-5 capsule catalyst in CH4 dehydroaromatization[J]. Catal Sci Technol, 2018,8(22):5740-5749. doi: 10.1039/C8CY01391H

    23. [23]

      HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bo. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. J Fuel Chem Technol, 2018,46(9):1087-1100. doi: 10.3969/j.issn.0253-2409.2018.09.008 

    24. [24]

      GUO J J, LUO H, ZHENG X M. The deposition of coke from methane on a Ni/MgAl2O4 catalyst[J]. Carbon, 2007,45(6):1314-1321. doi: 10.1016/j.carbon.2007.01.011

  • 加载中
    1. [1]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    2. [2]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    3. [3]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    4. [4]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    5. [5]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    8. [8]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    11. [11]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    12. [12]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    13. [13]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    14. [14]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    15. [15]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    16. [16]

      Hong Yan Wenfeng Wang Keyin Ye Yaofeng Yuan . Organic Electrochemistry and Its Integration into Chemistry Teaching. University Chemistry, 2025, 40(5): 301-310. doi: 10.12461/PKU.DXHX202407027

    17. [17]

      Lewang Yuan Yaoyao Peng Zong-Jie Guan Yu Fang . 二维共价有机框架作为光催化剂在有机合成中的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    20. [20]

      Feng Sha Xinyan Wu Ping Hu Wenqing Zhang Xiaoyang Luan Yunfei Ma . Design of Course Ideology and Politics for the Comprehensive Organic Synthesis Experiment of Benzocaine. University Chemistry, 2024, 39(2): 110-115. doi: 10.3866/PKU.DXHX202307082

Metrics
  • PDF Downloads(6)
  • Abstract views(571)
  • HTML views(33)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return