Citation: LI Xiang, QIN Zhi-hong, BU Liang-hui, YANG Zhuang, SHEN Chen-yang. Structural analysis of functional group and mechanism investigation of caking property of coking coal[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(4): 385-393. shu

Structural analysis of functional group and mechanism investigation of caking property of coking coal

  • Corresponding author: QIN Zhi-hong, qinzh1210@163.com
  • Received Date: 23 November 2015
    Revised Date: 11 February 2016

Figures(8)

  • Eleven coking coals were used in this study and FT-IR and the caking index tests were carried out. The peak separation and quantitative calculation of FT-IR spectra were performed by using Peakfit Software and the relationship between caking property and typical functional groups of coal was investigated. The results showed that there was a close relationship between caking property and FT-IR spectra of coal, especially in the regions of 3 000-2 800 cm-1 and 3 700-3 000 cm-1. The component with aliphatic structure was a major determinant of coal caking property. Usually the shorter chain length or the higher branching degree of coal aliphatic structure was, the higher caking property will be. The caking property was codetermined by aliphatic structure and hydrogen bond (including-OH or-NH) and there was a synergic relationship between them. When the condensed degree of structural unit was low and the amount of bridge bonds was higher, the plastic mass based on structural unit with moderate molecular weight can be generated regardless of the coal molecule size. The most dominant sort of binding forces in coal was hydrogen bond. An associative structure even supermolecular structure, which was broken and changed into plastic mass during the state of metaplast, was formed when a number of hydrogen bonds were associated together. The existence of plastic mass was beneficial to the transformation of metaplast into semi-coke and further acquisition of well caking property.
  • 加载中
    1. [1]

      YU A B, STANDISH N, LU L. Coal agglomeration and its effect on bulk density[J]. Powder Technol, 1995,82(2):177-189. doi: 10.1016/0032-5910(94)02912-8

    2. [2]

      NOMURA S, THOMAS K M. The effect of swelling pressure during coal carbonization on coke porosity[J]. Fuel, 1996,75(2):187-194. doi: 10.1016/0016-2361(95)00238-3

    3. [3]

      SEKI H, KUNAGAI J, MATSUDA M, ITO O, LINO M. Fluidity of coal residues after extraction with mixed solvents[J]. Fuel, 1989,68(8):978-982. doi: 10.1016/0016-2361(89)90061-6

    4. [4]

      KAM A Y, HIXSON A N, PERIMUTTER D D. The oxidation of bituminous coal 3. Effect on caking properties[J]. Ind Eng Chem Process Des Dev, 1976,15(3):416-422. doi: 10.1021/i260059a012

    5. [5]

      LOISON R, FOCH P, BOYER A. Coke: Quality and Production[M]. London: Butterworth, 1989.

    6. [6]

      CHEN P, MA J S. Petrographic characteristics of Chinese coals and their application in coal utilization processes[J]. Fuel, 2002,81(11):1389-1395.  

    7. [7]

      DIEZ M A, ALVAREZ R, BARRIOCANAL C. Coal for metallurgical coke production: Qredictions of coke quality and future requirements for cokemaking[J]. Int J Coal Geol, 2002,50(1):389-412.  

    8. [8]

      QIN Zhi-hong, YUAN Xin-hua, ZONG Zhi-min, WANG Yong-zhi, ZHANG Yu, WEI Xian-yong. Coking and non-coking components in coals[J]. Coal Convers, 1998,21(3):47-50.  

    9. [9]

      QIN Zhi-hong, LI Xing-shun, CHEN Juan, ZHANG Li-ying, HOU Cui-li, GONG Tao. Origin and formation mechanism of coal caking property[J]. J China Univ Min Technol, 2010,39(1):64-69.  

    10. [10]

      FERRARO J R, BASILE L J. Fourier Transform Infrared Spectroscopy: Applications to Chemical Systems(Vol.1)[M]. New York: Academic Press, 1985.

    11. [11]

      CHEN P. Significance and application of the caking index of coal-Ten years' review[J]. Fuel Process Technol, 1989,21(2):99-115. doi: 10.1016/0378-3820(89)90064-7

    12. [12]

      SHUI H F, LI H, CHANG H T, WANG Z H, GAO Z, LEI Z P, REN S B. Modification of sub-bituminous coal by steam treatment: Caking and coking properties[J]. Fuel Process Technol, 2011,92(12):2299-2304. doi: 10.1016/j.fuproc.2011.08.001

    13. [13]

      QI X Y, WANG D M, XIN H H, QI G S. In situ FT-IR study of real-time changes of active groups during oxygen-free reaction of coal[J]. Energy Fuels, 2013,27(6):3130-3136. doi: 10.1021/ef400534f

    14. [14]

      QIN Z H, CHEN H, YAN Y J, LI C S, RONG L M, YANG X Q. FT-IR quantitative analysis upon solubility of carbon disulfide/N-methyl-2-pyrrolidinone mixed solvent to coal petrographic constituents[J]. Fuel Process Technol, 2015,133:14-19. doi: 10.1016/j.fuproc.2015.01.001

    15. [15]

      ODEH A O. Oualitative and quantitative ATR-FTIR analysis and its application to coal char of different ranks[J]. J Fuel Chem Technol, 2015,43(2):129-137. doi: 10.1016/S1872-5813(15)30001-3

    16. [16]

      XIN H H, WANG D M, QI X Y, QIG S, DOU G L. Structural characteristics of coal functional groups using quantum chemistry for quantification of infrared spectra[J]. Fuel Process Technol, 2014,118:287-295. doi: 10.1016/j.fuproc.2013.09.011

    17. [17]

      RHOADS C A, SENFTLE J T, COLEMAN M M, DAVIS A, PAINTER P C. Further studies of coal oxidation[J]. Fuel, 1983,62(12):1387-1392. doi: 10.1016/0016-2361(83)90104-7

    18. [18]

      COOKE N E, FULLER O M, GAIKWAD R P. FT-IR spectroscopic analysis of coals and coal extracts[J]. Fuel, 1986,65(9):1254-1260. doi: 10.1016/0016-2361(86)90238-3

    19. [19]

      PAINTER P C, COLEMAN M M, SNYDER R W, MAHAJAN O, KOMATSU M, WALKER P L. Low temperature air oxidation of caking coals: Fourier transform infrared studies[J]. Appl Spectrosc, 1981,35(1):106-110. doi: 10.1366/0003702814731842

    20. [20]

      RIESSER B, STARSINIC M, SQUIRES E, DAVIS A, PAINTER P C. Determination of aromatic and aliphatic CH groups in coal by FT-IR: 2[J]. Fuel, 1984,63(9):1253-1261. doi: 10.1016/0016-2361(84)90434-4

    21. [21]

      SOBKOWIAK M, REISSER E, GIVEN P, PAINTER P. Determination of aromatic and aliphatic CH groups in coal by FT-IR: 1[J]. Fuel, 1984,63(9):1245-1252. doi: 10.1016/0016-2361(84)90433-2

    22. [22]

      KISTER J, GUILIANO M, MILLE G, DOU H. Changes in the chemical structure of low rank coal after low temperature oxidation or demineralization by acid treatment: Analysis by FT-IR and uv fluorescence[J]. Fuel, 1988,67(8):1076-1082. doi: 10.1016/0016-2361(88)90373-0

    23. [23]

      WANG S Q, CHENG H F, JIANG D, FAN H, SHEN S, BAI H P. Raman spectroscopy of coal component of Late Permian coals from Southern China[J]. Spectrochim Acta, Part A, 2014,132:767-770. doi: 10.1016/j.saa.2014.06.003

    24. [24]

      SOLOMON P R, CARANGELO R M. FT-IR analysis of coal.1.Techniques and determination of hydroxyl concentrations[J]. Fuel, 1982,61(7):663-669. doi: 10.1016/0016-2361(82)90014-X

    25. [25]

      SHUI H F, WANG Z C, WANG G Q. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent[J]. Fuel, 2006,85(12):1798-1802.  

    26. [26]

      ZHANG Ke, YAO Su-ping, HU Wen-xuan, FANG Hong-feng. Analysis on infrared spectra characteristic of coal and discussion of coalification mechanism[J]. Coal Geol Explor, 2009,37(6):8-13.  

    27. [27]

      LUO Yun-fei. Study of coal macromolecular structure: Structure of inertinite and the characteristics of oxygen functional groups in coal. Beijing: China Coal Research Institute, 2002. 

    28. [28]

      CHEN Chong, XU Xue-min, GAO Jin-sheng, YAN Yong-jie. Type of hydrogen bonds in coal[J]. J Fuel Chem Technol, 1998,26(2):140-144.  

    29. [29]

      LI Wen, LI Dong-tao, CHEN Hao-kan, LI Bao-qing. Regulation of hydrogen bonds in coal through O-methylation and its effect on pyrolysis property[J]. J Fuel Chem Technol, 2003,31(6):513-518.  

    30. [30]

      HE Xiao-qun, LIU Wen-qing. Application of Regression Analysis [M]. 2nd ed. Beijing: China Renmin University Press, 2007.

    31. [31]

      CHEN De-ren, QIN Zhi-hong, CHEN Juan, HUA Zong-qi, CHEN Dong-mei. Study on the model of coal structure and its prospects[J]. Coal Chem Ind, 2011,39(4):28-31.  

    32. [32]

      ZHU Yin-hui. Coal Chemistry[M]. Beijing: Chemical Industry Press, 2005.

    33. [33]

  • 加载中
    1. [1]

      Wei Peng Baoying Wen Huamin Li Yiru Wang Jianfeng Li . Exploration and Practice on Raman Scattering Spectroscopy Experimental Teaching. University Chemistry, 2024, 39(8): 230-240. doi: 10.3866/PKU.DXHX202312062

    2. [2]

      Ling Bai Limin Lu Xiaoqiang Wang Dongping Wu Yansha Gao . Exploration and Practice of Teaching Reforms in “Quantitative Analytical Chemistry” under the Perspective of New Agricultural Science. University Chemistry, 2024, 39(3): 158-166. doi: 10.3866/PKU.DXHX202308101

    3. [3]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    4. [4]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    5. [5]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    6. [6]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    7. [7]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    8. [8]

      Shiqi PengYongfang RaoTan LiYufei ZhangJun-ji CaoShuncheng LeeYu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219

    9. [9]

      A-Yang WangSheng-Hua ZhouMao-Yin RanXin-Tao WuHua LinQi-Long Zhu . Regulating the key performance parameters for Hg-based IR NLO chalcogenides via bandgap engineering strategy. Chinese Chemical Letters, 2024, 35(10): 109377-. doi: 10.1016/j.cclet.2023.109377

    10. [10]

      Lilin SongMengru SunYuqing SongFeng ZhangBei ZhaoHairong ZengJinhui ShiHuixin LiuShanshan ZhaoTian TianHeng YinGuangbo Ge . Rationally engineered IR-783 octanoate as an enzyme-activatable fluorogenic tool for functional imaging of hNotum in living systems. Chinese Chemical Letters, 2024, 35(11): 109601-. doi: 10.1016/j.cclet.2024.109601

    11. [11]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    12. [12]

      Panpan WangHongbao FangMengmeng WangGuandong ZhangNa XuYan SuHongke LiuZhi Su . A mitochondria targeting Ir(III) complex triggers ferroptosis and autophagy for cancer therapy: A case of aggregation enhanced PDT strategy for metal complexes. Chinese Chemical Letters, 2025, 36(1): 110099-. doi: 10.1016/j.cclet.2024.110099

    13. [13]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    14. [14]

      Dongheng WANGSi LIShuangquan ZANG . Construction of chiral alkynyl silver chains and modulation of chiral optical properties. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 131-140. doi: 10.11862/CJIC.20240379

    15. [15]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    16. [16]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    17. [17]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    18. [18]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    19. [19]

      Yong-Fang Shi Sheng-Hua Zhou Zuju Ma Xin-Tao Wu Hua Lin Qi-Long Zhu . From [Ba3S][GeS4] to [Ba3CO3][MS4] (M = Ge, Sn): Enhancing optical anisotropy in IR birefringent crystals via functional group implantation. Chinese Journal of Structural Chemistry, 2025, 44(1): 100455-100455. doi: 10.1016/j.cjsc.2024.100455

    20. [20]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

Metrics
  • PDF Downloads(1)
  • Abstract views(2001)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return