Citation: CHEN Liang, LI Ming-hang, MIAO Jie, TAN Guan-xi, JIN Guang-zhou. Study on n-butane catalytic cracking for promoting propylene production over nMoOx·HZSM-5[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 864-870. shu

Study on n-butane catalytic cracking for promoting propylene production over nMoOx·HZSM-5

  • Corresponding author: JIN Guang-zhou, jinguangzhou@bipt.edu.cn
  • Received Date: 13 March 2018
    Revised Date: 16 May 2018

    Fund Project: The project was supported by the National Basic Research Program of China (973 program, 2012CB215002)the National Basic Research Program of China 973 programthe National Basic Research Program of China 2012CB215002

Figures(7)

  • A series of nMoOx·HZSM-5 single-phase complexes were prepared by incipient wetness impregnation, and characterized by XRD, NH3-TPD, Py-FTIR, BET and SEM techniques. The n-butane catalytic cracking performance over nMoOx·HZSM-5 was investigated by using a continuous flowing micro reactor. The results indicate that active component Mo is located in the cross of Z form channel and straight channel of HZSM-5 in the form of MoOx clusters to generate a nMoOx·HZSM-5 single-phase complex, causing the contraction of HZSM-5 lattice cell and the reduction in the lattice parameters and cell volume of HZSM-5 as well as the decrease in specific surface area of HZSM-5. The acidity of nMoOx·HZSM-5 shows an increases firstly and then a decrease with the increasing dosage of active component Mo. The n-butane catalytic cracking conversion over nMoOx·HZSM-5-0.75% is 73.83% at reaction temperature of 625℃ and gas space velocity of 5600 h-1, slightly lower than that over HZSM-5. However, the propylene yield over nMoOx·HZSM-5-0.75% reaches 13.13%, 2 percent points higher than that over HZSM-5, exhibiting a better performance on the promotion of propylene yield.
  • 加载中
    1. [1]

      WANG Meng-yao, ZHOU Jia-wen, REN Tian-hua, MENG Xiang-hai, ZHANG Rui, LIU Hai-yan. Catalytic cracking processes for maximizing propylene production[J]. Chem Ind Eng Prog, 2015,34(6):1619-1624.  

    2. [2]

      BOSWELL C, WEDDLE N, MEEHAN J, TERRY L. Propylene boosts prices downstream[J]. ICIS Chem Business, 2011,279(4):20-21.  

    3. [3]

      XIN L, AMIT K, YING H, HARSHUL V T, MARKTUS A A, FATEME R, DOUGLAS K L, ALI A R. Light olefins from renewable resources:Selective catalytic dehydration of bioethanol to propylene over zeolite and transition metal oxide catalysts[J]. Catal Today, 2016,276(15):62-77.  

    4. [4]

      SHINYA H, AZUSA M, SHUHEI W, RYUICHI K, FUYUKI Y. Catalytic conversion of light hydrocarbons to propylene over MFI-zeolite/metal-oxide composites[J]. Microporous Mesoporous Mater, 2016,233(15):125-132.  

    5. [5]

      CHEN Shuo, WANG Ding-bo, JI Yuan-yuan, BAI Jie. Development in on-purpose propylene technology[J]. Petrochem Technol, 2011,40(2):217-224.  

    6. [6]

      WANG H. Advances and prospect of low-carbon olefin production technology[J]. Sino Global Energy, 2010,15(8):62-67.  

    7. [7]

      WANG Wei-min. Progress and perspectives on conversion and utilization of C4 hydrocarbons[J]. Chem Ind Eng Prog, 2015,34(1):1-9.  

    8. [8]

      GANG W, XU C, GAO J. Study of cracking FCC naphtha in a secondary riser of the FCC unit for maximum propylene production[J]. Fuel Process Technol, 2008,89(9):864-873. doi: 10.1016/j.fuproc.2008.02.007

    9. [9]

      LI X H, LI C Y, ZHANG J F, YANG C H, SHAN H H. Effects of temperature and catalyst to oil weight ratio on the catalytic conversion of heavy oil to propylene using ZSM-5 and USY catalysts[J]. J Nat Gas Chem, 2007,16(1):92-99. doi: 10.1016/S1003-9953(07)60033-4

    10. [10]

      ZHAO Z T, LIU Y, WANG F, LI X K, DENG S P, XU J, WEI W, WANG F. Life cycle assessment of primary energy demand and greenhouse gas (GHG) emissions of four propylene production pathways in China[J]. J Clean Prod, 2017,163(9):285-292.  

    11. [11]

      RICCA A, PALMA V, LAQUANIELLO G, PALO E, SALLADINI A. Highly selective propylene production in a membrane assisted catalytic propane dehydrogenation[J]. Chem Eng J, 2017,330(22):1119-1127.  

    12. [12]

      EPELDE E, GAYUBO A G, OLAZAR M, BILBAO J, AGUAYO A T. Modified HZSM-5 zeolites for intensifying propylene production in the transformation of 1-butene[J]. Chem Eng J, 2014,251(16):80-91.  

    13. [13]

      XIE Chao-gang. Study on inflencing factors of Propylene selectivity in a deep catalytic cracking process[J]. Acta Pet Sin(Pet Process Sect), 2018,34(1):1-6.  

    14. [14]

      WANG P, TIAN X, YANG C, YANG C H, YUAN Z H. Economics-oriented nmpc of two-stage-riser catalytic pyrolysis processes for maximizing propylene yield[J]. IFAC-Papers Online, 2015,48(8):32-37. doi: 10.1016/j.ifacol.2015.08.153

    15. [15]

      KOTREL S, KNOZINGER H, GATES B C. The Haag-Dessau mechanism of protolytic cracking of alkanes[J]. Microporous Mesoporous Mater, 2000,35(99):11-20.  

    16. [16]

      XU X, LI C, SHAN H. Effect of phosphorus on novel bifunctional additives for enhancing the production of propylene and removal of SO2, in FCC process[J]. J Mol Catal A:Chem, 2011,340(1/2):99-107.  

    17. [17]

      VERSTRAETE J, COUPARD V, THOMAZEAU C, ETIENNE P. Study of direct and indirect naphtha recycling to a resid FCC unit for maximum propylene production[J]. Catal Today, 2005,106(1/4):62-71.  

    18. [18]

      MOHIUDDIN E, SA Y M, MDLELENI M M, SINCADU N, David Key, TSHABALALA T. Synthesis of ZSM-5 from impure and beneficiated Grahamstown kaolin:Effect of kaolinite content, crystallisation temperatures and time[J]. Appl Clay Sci, 2016,119(2):213-221.  

    19. [19]

      SHIMADA I, TAKIZAWA K, FUKUNAGA H, TAKAHASHI N, TAKATSUKA T. Catalytic cracking of polycyclic aromatic hydrocarbons with hydrogen transfer reaction[J]. Fuel, 2015,161(28):207-214.  

    20. [20]

      JIN H, ANSARI M B, PARK S E. Sulfonic acid functionalized mesoporous ZSM-5:Synthesis, characterization and catalytic activity in acidic catalysis[J]. Catal Today, 2015,245(33):116-121.  

    21. [21]

      CHEN X, DONG M, NIU X J, WANG K, CHEN G, FAN W B, WANG J G, QIN Z F. Influence of Zn species in HZSM-5 on ethylene aromatization[J]. Chin J Catal, 2015,36(6):880-888. doi: 10.1016/S1872-2067(14)60289-8

    22. [22]

      KONINGSVELD H V, BEKKUM H V, JANSEN J C. On the location and disorder of the tetrapropylammonium (TPA) ion in zeolite ZSM-5 with improved framework accuracy[J]. Acta Crystallogr, 1987,43(2):127-132. doi: 10.1107/S0108768187098173

    23. [23]

      ZHOU D, MA D, LIU X, BAO X. A simulation study on the absorption of molybdenum species in the channels of HZSM-5 zeolite[J]. J Mol Catal A:Chem, 2001,168(1/2):225-232.  

    24. [24]

      QI C, WANG Y, DING X, SU H J. Catalytic cracking of light diesel over Au/ZSM-5 catalyst for increasing propylene production[J]. Chin J Catal, 2016,37(10):1747-1754. doi: 10.1016/S1872-2067(16)62499-3

    25. [25]

      PARK S, BILIGETU T, WANG Y, NISHITOBA T, KONDO J N, YOKOI T. Acidic and catalytic properties of ZSM-5 zeolites with different Al distributions[J]. Catal Today, 2017,303(20):64-70.  

  • 加载中
    1. [1]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    4. [4]

      Guojie Xu Fang Yu Yunxia Wang Meng Sun . Introduction to Metal-Catalyzed β-Carbon Elimination Reaction of Cyclopropenones. University Chemistry, 2024, 39(8): 169-173. doi: 10.3866/PKU.DXHX202401060

    5. [5]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    6. [6]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    7. [7]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    8. [8]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    9. [9]

      Xueli Mu Lingli Han Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057

    10. [10]

      Hong Wu Yuxi Wang Hongyan Feng Xiaokui Wang Bangkun Jin Xuan Lei Qianghua Wu Hongchun Li . Application of Computational Chemistry in the Determination of Magnetic Susceptibility of Metal Complexes. University Chemistry, 2025, 40(3): 116-123. doi: 10.12461/PKU.DXHX202405141

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    13. [13]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

    14. [14]

      Aimin FuChunmei ChenQin LiNanjin DingJiaxin DongYu ChenMengsha WeiWeiguang SunHucheng ZhuYonghui Zhang . Niduenes A−F, six functionalized sesterterpenoids with a pentacyclic 5/5/5/5/6 skeleton from endophytic fungus Aspergillus nidulans. Chinese Chemical Letters, 2024, 35(9): 109100-. doi: 10.1016/j.cclet.2023.109100

    15. [15]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    16. [16]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    17. [17]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    18. [18]

      Yang Chen Peng Chen Yuyang Song Yuxue Jin Song Wu . Application of Chemical Transformation Driven Impurity Separation in Experiments Teaching: A Novel Method for Purification of α-Fluorinated Mandelic Acid. University Chemistry, 2024, 39(6): 253-263. doi: 10.3866/PKU.DXHX202310077

    19. [19]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    20. [20]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

Metrics
  • PDF Downloads(7)
  • Abstract views(1632)
  • HTML views(116)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return