Citation: JIN Hu, WANG Ze-an, YANG Wei, NING Jian, XIE Yi-hao, LIU Hao. Melting behavior and heterogeneous reaction of Na-bearing deposits at high temperature during high-alkali coal combustion[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 31-38. shu

Melting behavior and heterogeneous reaction of Na-bearing deposits at high temperature during high-alkali coal combustion

  • Corresponding author: LIU Hao, liuhao@hust.edu.cn
  • Received Date: 23 July 2018
    Revised Date: 28 October 2018

    Fund Project: the National Key Research and Development Program of China 2017YFC0703100the National Natural Science Foundation of China 51276074The project was supported by the National Key Research and Development Program of China (2017YFC0703100) and the National Natural Science Foundation of China (51276074)

Figures(7)

  • The pure chemicals were used to simulate the composition of typical ash deposits on heat exchanger surfaces during high-alkali coal combustion, and the thermal mechanical analysis (TMA), TG-DSC analysis and high-temperature calcination were performed to investigate the high temperature melting characteristics of the deposits with varying content of Na2SO4. Subsequently, XRD and SEM-EDS techniques were applied to investigate the reaction products and detailed mechanism. The results indicate that the melting characteristic temperature of deposits decreases significantly after blending with Na2SO4, and the transformation of Na2SO4 is closely related to the blending ratio. When the blending ratio is below 20% (mass ratio), most Na2SO4 is converted to CaSO4 and sodium aluminosilicate, while Na2SO4 would react with CaSO4 and generate sulfate double salts when the blending ratio is over 40%. Moreover, the particles of Na2SO4 enriched deposits begin to adhere at 800℃. When the temperature is elevated to 900-950℃, the low-temperature eutectics are easily formed in the presence of nepheline and albite, and the eutectics and Na-Ca sulfate double salts are gradually molten. The large amount of co-melting of akermanite and Ca-bearing minerals was observed at temperatures of 1200-1250℃, and the minerals are completely melted at temperatures over 1300℃.
  • 加载中
    1. [1]

      ZHOU J B, ZHUANG X G, ALASTUEY A, QUEROL X, LI J H. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin, Xinjiang province, China[J]. Int J Coal Geol, 2010,82(1/2):51-67.  

    2. [2]

      ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LV Jun-fu, WANG Jian, GUO Xi, DONG Ai-xia, XiONG Shao-wu. Situation of combustion utilization of high sodium coal[J]. Proc CSEE, 2013,33(5):1-12.  

    3. [3]

      WANG X B, XU Z X, WEI B, ZHANG L, TAN H Z, YANG T, MIKULCIC H, DUIC N. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015,80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051

    4. [4]

      SONG G L, SONG W J, QI X B, LU Q G. Transformation characteristics of sodium of zhundong coal combustion/gasification in circulating fluidized bed[J]. Energy Fuels, 2016,30(4):3473-3478. doi: 10.1021/acs.energyfuels.6b00028

    5. [5]

      TOMECZEK J, PALUGNIOK H, OCHMAN J. Modelling of deposits formation on heating tubes in pulverized coal boilers[J]. Fuel, 2004,83(2):213-221. doi: 10.1016/S0016-2361(03)00219-9

    6. [6]

      GLARBORG P, MARSHALL P. Mechanism and modeling of the formation of gaseous alkali sulfates[J]. Combust Flame, 2005,141(1/2):22-39.  

    7. [7]

      ZHOU H, ZHOU B, ZHANG H, LI L, CEN K. Investigation of slagging characteristics in a 300 kW test furnace:Effect of deposition surface temperature[J]. Ind Eng Chem Res, 2014,53(17):7233-7246. doi: 10.1021/ie4041516

    8. [8]

      WU X J, ZHANG X, YAN K, CHEN N, ZHANG J W, XU X Y, DAI B Q, ZHANG J, ZHANG L. Ash deposition and slagging behavior of Chinese Xinjiang high-alkali coal in 3 MW th pilot-scale combustion test[J]. Fuel, 2016,181:1191-1202. doi: 10.1016/j.fuel.2016.03.069

    9. [9]

      YANG Tao, LI Wen-guang, WU Sha, ZHANG Lan, WANG Xue-bin, TAN Hou-zhang. Study on fouling mechanism in a boiler burning Xinjiang coal with high content of calcium and sodium[J]. J Fuel Chem Technol, 2015,43(11):1320-1326. doi: 10.3969/j.issn.0253-2409.2015.11.006

    10. [10]

      WEI Bo, TAN Hou-zhang, WANG Xue-bin, HU Zhong-fa, WANG Yi-bin, RUAN Ren-hui. Ash deposition and inorganic element transformation during zhundong coal combustion[J]. J Eng Thermophys, 2016,37(8):1783-1788.  

    11. [11]

      WEI B, TAN H Z, WANG Y B, WANG X B, YANG T, RUAN R H. Investigation of characteristics and formation mechanisms of deposits on different positions in full-scale boiler burning high alkali coal[J]. Appl Therm Eng, 2017,119:449-458. doi: 10.1016/j.applthermaleng.2017.02.091

    12. [12]

      LI G D, LI S Q, HUANG Q, YAO Q. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015,143(44):430-437.  

    13. [13]

      CHEN Xiao-dong, KONG Ling-xue, BAI Jin, BAI Zong-qing, LI Wen. Effect of Na2O on mineral transformation of coal ash under high temperature gasification condition[J]. J Fuel Chem Technol, 2016,44(3):263-272. doi: 10.3969/j.issn.0253-2409.2016.03.002 

    14. [14]

      HAN Ke-xin, HUANG Zhen-yu, WANG Zhi-hua, ZHOU Jun-hu. Action mechanism of sodium compounds in Zhundong coal ash on the process of sintering and fusion[J]. J Fuel Chem Technol, 2015,43(1):22-26. doi: 10.3969/j.issn.0253-2409.2015.01.004 

    15. [15]

      QI X B, SONG G L, SONG W J, LU Q G. Influence of sodium-based materials on the slagging characteristics of Zhundong coal[J]. J Energy Inst, 2016,90(6):914-922.  

    16. [16]

      CHEN Heng, WANG Yun-gang, MA Hai-dong, ZHAO Qin-xin. Analysis and Study of the Slagging and Contamination of a CFB Boiler Burning Zhundong-originated Coal[J]. J Eng Therm Energy Power, 2015,30(3):431-435.  

    17. [17]

      WANG Li-peng, ZHAO Yong-chun, ZHANG Jun-ying, YAO Bin, ZHENG Chu-guang. Research on the slagging and fouling characteristics of Zhundong coal[J]. J Eng Thermophys, 2015,36(6):1381-1385.  

    18. [18]

      YANG Guang, ZHANG Yan-wei, KOU Xi-wen, ZHOU Zhi-jun, WANG Zhi-hui, ZHOU Jun-hu, CEN Ke-fa. Mineral conversion and thermodynamic simulation of ash deposition during Zhundong coal combustion in boiler of thermal power plant[J]. J Fuel Chem Technol, 2015,43(10):1182-1187. doi: 10.3969/j.issn.0253-2409.2015.10.005 

    19. [19]

      WANG Yong-zhen, JIN Jing, LIU Dun-yu, YANG Hao-ran, ZHAI Zhong-yuan, LI Huan-long. Characterization of ash deposits along the flue gas for Zhundong coal combustion in a 330mw boiler[J]. Proc CSEE, 2017,37(21):6373-6380.  

    20. [20]

      YANG Shao-bo, SONG Guo-liang, SONG Wei-jian, QI Xiao-bin. Transformation and deposition characteristics of sodium in Zhundong high sodium coal under different reaction atmospheres[J]. J Fuel Chem Technol, 2016,44(9):1051-1058. doi: 10.3969/j.issn.0253-2409.2016.09.004 

    21. [21]

      LAWRENCE A, KUMAR R, NANDAKUMAR K, NARAYANAN K. A Novel tool for assessing slagging propensity of coals in PF boilers[J]. Fuel, 2008,87(6):946-950. doi: 10.1016/j.fuel.2007.07.028

    22. [22]

      GUPTA S K, WALL T F, CREELMAN R A, GUPTA R P. Ash fusion temperatures and the transformations of coal ash particles to slag[J]. Fuel Process Technol, 1998,56(1/2):33-43.  

    23. [23]

      YAN T G, KONG L X, BAI J, BAI Z Q, LI W. Thermomechanical analysis of coal ash fusion behavior[J]. Chem Eng Sci, 2016,147:74-82. doi: 10.1016/j.ces.2016.03.016

    24. [24]

      KIM J H, KIM G B, JEON C H. Prediction of correlation between ash fusion temperature of ASTM and thermo-mechanical analysis[J]. Appl Therm Eng, 2017,75(9):1218-1228.  

    25. [25]

      QI X B, SONG G L, YANG S B, YANG Z, LYU Q G. Exploration of effective bed material for use as slagging/agglomeration preventatives in circulating fluidized bed gasification of high-sodium lignite[J]. Fuel, 2018,217:577-586. doi: 10.1016/j.fuel.2017.12.126

    26. [26]

      KYI S, CHADWICK B L. Screening of potential mineral additives for use as fouling preventatives in Victorian brown coal combustion[J]. Fuel, 1999,78(7):845-855. doi: 10.1016/S0016-2361(98)00205-1

    27. [27]

      ZHOU Yong-gang, FAN Jian-yong, LI Pei, WANG Bing-hui, ZHAO Hong. Mineral transmutation of high alkali Zhundong coal in ash melting process[J]. J Zhejiang Univ (Eng Sci), 2015,49(8):1559-1564.  

    28. [28]

      WANG Y Z, JIN J, LIU D Y, YANG H R, LI S J. Understanding ash deposition for the combustion of Zhundong coal:Focusing on different additives effects[J]. Energy Fuels, 2018,32(6):7103-7111. doi: 10.1021/acs.energyfuels.8b00384

    29. [29]

      FREYER D, VOIGT W, KOHNKE K. The phase diagram of the system Na2SO4 -CaSO4[J]. Eur J Sol State Inor, 1998,35(s1/11):595-606.

    30. [30]

      SONG G L, YANG S B, SONG W J, QI X B. Release and transformation behaviors of sodium during combustion of high alkali residual carbon[J]. Appl Therm Eng, 2017,122:285-296. doi: 10.1016/j.applthermaleng.2017.04.139

  • 加载中
    1. [1]

      Guoqiang Chen Zixuan Zheng Wei Zhong Guohong Wang Xinhe Wu . 熔融中间体运输导向合成富氨基g-C3N4纳米片用于高效光催化产H2O2. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-. doi: 10.3866/PKU.WHXB202406021

    2. [2]

      Lijun Dong Pengcheng Du Guangnong Lu Wei Wang . Exploration and Practice of Independent Design Experiments in Inorganic and Analytical Chemistry: A Case Study of “Preparation and Composition Analysis of Tetraammine Copper(II) Sulfate”. University Chemistry, 2024, 39(4): 361-366. doi: 10.3866/PKU.DXHX202310041

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Xiaowu Zhang Pai Liu Qishen Huang Shufeng Pang Zhiming Gao Yunhong Zhang . Acid-Base Dissociation Equilibrium in Multiphase System: Effect of Gas. University Chemistry, 2024, 39(4): 387-394. doi: 10.3866/PKU.DXHX202310021

    7. [7]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    8. [8]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    9. [9]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    10. [10]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    11. [11]

      Shipeng WANGShangyu XIELuxian LIANGXuehong WANGJie WEIDeqiang WANG . Piezoelectric effect of Mn, Bi co-doped sodium niobate for promoting cell proliferation and bacteriostasis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1919-1931. doi: 10.11862/CJIC.20240094

    12. [12]

      Qiuping Liu Yongxian Fan Wenxian Chen Mengdi Wang Mei Mei Genrong Qiang . Design of Ideological and Political Education for the Preparation Experiment of Ferrous Sulfate. University Chemistry, 2024, 39(2): 116-120. doi: 10.3866/PKU.DXHX202309083

    13. [13]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    14. [14]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    15. [15]

      Jihua Deng Xinshi Wu Dichang Zhong . Exploration of Green Teaching and Ideological and Political Education in Chemical Experiment of “Preparation of Ammonium Ferrous Sulfate”. University Chemistry, 2024, 39(10): 325-329. doi: 10.12461/PKU.DXHX202405046

    16. [16]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    17. [17]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    18. [18]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    19. [19]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    20. [20]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

Metrics
  • PDF Downloads(6)
  • Abstract views(2628)
  • HTML views(292)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return