Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2
- Corresponding author: BAI Jin, stone@sxicc.ac.cn
Citation:
LI Xiao-ming, ZHANG Hong, LIU Meng-jie, ZHI Li-fei, BAI Jin, BAI Zong-qing, LI Wen. Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(8): 897-907.
JEONG H J, PARK S S, HWANG J. Co-gasification of coal-biomass blended char with CO2 at temperatures of 900-1100℃[J]. Fuel, 2014,116:465-470. doi: 10.1016/j.fuel.2013.08.015
YUAN S, CHEN X L, LI J, WANG F C. CO2 gasification kinetics of biomass char derived from high-temperature rapid pyrolysis[J]. Energy Fuels, 2011,25(5):2314-2321. doi: 10.1021/ef200051z
STIEGEL G J, MAXWELL R C. Gasification technologies:The path to clean, affordable energy in the 21st century[J]. Fuel Process Technol, 2001,71(1/3):79-97.
FRANCO A, DIAZ A R. The future challenges for "clean coal technologies":Joining efficiency increase and pollutant emission control[J]. Energy, 2008,34(3):348-354.
DI BLASI C. Combustion and gasification rates of lignocellulosic chars[J]. Prog Energy Combust Sci, 2009,35(2):121-140. doi: 10.1016/j.pecs.2008.08.001
DUPONT C, NOCQUET T, DA COSTA J A, VERNE-TOURNON C. Kinetic modelling of steam gasification of various woody biomass chars:Influence of inorganic elements[J]. Bioresour Technol, 2011,102(20):9743-9748. doi: 10.1016/j.biortech.2011.07.016
DING L, ZHANG Y, WANG Z, HUANG J, FANG Y. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol, 2014,173:11-20. doi: 10.1016/j.biortech.2014.09.007
LIU L, CAO Y, LIU Q C. Kinetics studies and structure characteristics of coal char under pressurized CO2 gasification conditions[J]. Fuel, 2015,146:103-110. doi: 10.1016/j.fuel.2015.01.002
WU Z Q, YANG W C, LI Y W, YANG B L. Co-pyrolysis behavior of microalgae biomass and low-quality coal:Products distributions, char-surface morphology, and synergistic effects[J]. Bioresour Technol, 2018,255:238-245. doi: 10.1016/j.biortech.2018.01.141
WU Z Q, WANG S Z, LUO Z Y, CHEN L, MENG H Y, ZHAO J. Physico-chemical properties and gasification reactivity of co-pyrolysis char from different rank of coal blended with lignocellulosic biomass:Effects of the cellulose[J]. Bioresour Technol, 2017,235:256-264. doi: 10.1016/j.biortech.2017.03.121
WU Z Q, MA C, JIANG Z, LUO Z Y. Structure evolution and gasification characteristic analysis on co-pyrolysis char from lignocellulosic biomass and two ranks of coal:Effect of wheat straw[J]. Fuel, 2019,239:180-190. doi: 10.1016/j.fuel.2018.11.015
LI S D, CHEN X L, WANG L, LIU A B, YU G S. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor[J]. Bioresour Technol, 2013,148:24-29. doi: 10.1016/j.biortech.2013.08.126
ZHU W K, SONG W L, LIN W G. Catalytic gasification of char from co-pyrolysis of coal and biomass[J]. Fuel Process Technol, 2008,89(9):890-896. doi: 10.1016/j.fuproc.2008.03.001
LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels-A review[J]. Fuel, 2013,112:609-623. doi: 10.1016/j.fuel.2013.01.031
ASADULLAH M, ZHANG S, MIN Z, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol, 2010,101(20):7935-7943. doi: 10.1016/j.biortech.2010.05.048
LIANG D C, XIE Q, WAN C R, LI G S, CAO J Y. Evolution of structural and surface chemistry during pyrolysis of Zhundong coal in an entrained-flow bed reactor[J]. J Anal Appl Pyrolysis, 2019,140:331-338. doi: 10.1016/j.jaap.2019.04.010
YUAN S, DAI Z H, ZHOU Z J, CHEN X L, YU G S, WANG F C. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char[J]. Bioresour Technol, 2012,109:188-197. doi: 10.1016/j.biortech.2012.01.019
LIU M J, BAI J, KONG L X, BAI Z Q, HE C, LI W. The correlation between coal char structure and reactivity at rapid heating condition in TGA and heating stage microscope[J]. Fuel, 2020,260116318. doi: 10.1016/j.fuel.2019.116318
WU S Y, JING G, XIAO Z, WU Y Q, CAO J S. Variation of carbon crystalline structures and CO2 gasification reactivity of Shenfu coal chars at elevated temperatures[J]. Energy Fuels, 2008,22(1):199-206.
BO F, BHATIA S K, BARRY J C. Variation of the crystalline structure of coal char during gasification[J]. Energy Fuels, 2003,17(3):744-754. doi: 10.1021/ef0202541
YAN L B, CAO Y, ZHOU H Z Y, HE B S. Investigation on biomass steam gasification in a dual fluidized bed reactor with the granular kinetic theory[J]. Bioresour Technol, 2018,269:384-392. doi: 10.1016/j.biortech.2018.08.099
WEI J T, GONG Y, GUO Q H, CHEN X L, DING L, YU G S. A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals[J]. Renewable Energy, 2019,131:597-605. doi: 10.1016/j.renene.2018.07.075
HUANG Y Q, YIN X L, WU C Z, WANG C W, XIE J J, ZHOU Z Q, MA L L, LI H B. Effects of metal catalysts on CO2 gasification reactivity of biomass char[J]. Biotechnol Adv, 2009,27(5):568-572. doi: 10.1016/j.biotechadv.2009.04.013
JIA S, NING S Y, YING H, SUN Y J, XU W, YIN H. High quality syngas production from catalytic gasification of woodchip char[J]. Energy Convers Manage, 2017,151:457-464. doi: 10.1016/j.enconman.2017.09.008
QI X J, XIN G, XUE L C, ZHENG C G. Effect of iron on Shenfu coal char structure and its influence on gasification reactivity[J]. J Fuel Chem Technol, 2014,110:401-407.
BAI B Y, GUO Q J, LI Y K, HU X D, MA J J. Catalytic gasification of crushed coke and changes of structural characteristics[J]. Energy Fuels, 2018,32(3):3356-3367. doi: 10.1021/acs.energyfuels.8b00192
YU J Q, GONG Y, WEI J T, DING L, SONG X D, YU G S. Promoting effect of biomass ash additives on high-temperature gasification of petroleum coke:Reactivity and kinetic analysis[J]. J Energy Inst, 2020,52:420-425.
AZARGOHAR R, NANDA S, KOZINSKI J A, DALAI A K, SUTARTO R. Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass[J]. Fuel, 2014,125:90-100. doi: 10.1016/j.fuel.2014.01.083
WANG G W, ZHANG J L, HOU X M, SHAO J G, GENG W W. Study on CO2 gasification properties and kinetics of biomass chars and anthracite char[J]. Bioresour Technol, 2015,177:66-73. doi: 10.1016/j.biortech.2014.11.063
OCHOA J, CASSANELLO M C, BONELLI P R, CUKIERMAN A L. CO2 gasification of Argentinean coal chars:A kinetic characterization[J]. Fuel Process Technol, 2001,74(3):161-176.
LU L M, KONG C H, SAHAJWALLA V, HARRIS D. Char structural ordering during pyrolysis and combustion and its influence on char reactivity[J]. Fuel, 2002,81(9):1215-1225. doi: 10.1016/S0016-2361(02)00035-2
TAY H L, LI C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal:Comparison between gasification in O2 and CO2[J]. Fuel Process Technol, 2010,91(8):800-804. doi: 10.1016/j.fuproc.2009.10.016
LIU M J, BAI J, YU J L, KONG L X, BAI Z Q, LI H Z, HE C, GE Z F, CAO X, LI W. Correlation between char gasification characteristics at different stages and microstructure of char by combining X-ray diffraction and raman spectroscopy[J]. Energy Fuels, 2020,34(4):4162-4172. doi: 10.1021/acs.energyfuels.9b04445
LAHIJANI P, ZAINAL Z A, MOHAMED A R, MOHAMMADI M. CO2 gasification reactivity of biomass char:Catalytic influence of alkali, alkaline earth and transition metal salts[J]. Bioresour Technol, 2013,144:288-295. doi: 10.1016/j.biortech.2013.06.059
MITSUHIRO S, YOSHIHISA S, YUKIAKI H. Influence of coal characteristics on CO2 gasification[J]. Elsevier, 1982,61(8):717-720.
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
Junqi Wang , Shuai Zhang , Jingjing Ma , Xiangjun Liu , Yayun Ma , Zhimin Fan , Jingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725
Junhao Dai , Zhu He , Xinhai Li , Guochun Yan , Hui Duan , Guangchao Li , Zhixing Wang , Huajun Guo , Wenjie Peng , Jiexi Wang . Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2. Chinese Chemical Letters, 2025, 36(6): 110063-. doi: 10.1016/j.cclet.2024.110063
Yongheng Ren , Yang Chen , Hongwei Chen , Lu Zhang , Jiangfeng Yang , Qi Shi , Lin-Bing Sun , Jinping Li , Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394
Huirong Chen , Yingzhi He , Yan Han , Jianbo Hu , Jiantang Li , Yunjia Jiang , Basem Keshta , Lingyao Wang , Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508
Ajay Piriya Vijaya Kumar Saroja , Yuhan Wu , Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408
Ningning Gao , Yue Zhang , Zhenhao Yang , Lijing Xu , Kongyin Zhao , Qingping Xin , Junkui Gao , Junjun Shi , Jin Zhong , Huiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820
Fahui Xiang , Lu Li , Zhen Yuan , Wuji Wei , Xiaoqing Zheng , Shimin Chen , Yisi Yang , Liangji Chen , Zizhu Yao , Jianwei Fu , Zhangjing Zhang , Shengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672
Xu-Hui Yue , Xiang-Wen Zhang , Hui-Min He , Lei Qiao , Zhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907
Yuanjin Chen , Xianghui Shi , Dajiang Huang , Junnian Wei , Zhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292
Xuehua SUN , Min MA , Jianting LIU , Rui TIAN , Hongmei CHAI , Huali CUI , Loujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294
Huazhe Wang , Chenghuan Qiao , Chuchu Chen , Bing Liu , Juanshan Du , Qinglian Wu , Xiaochi Feng , Shuyan Zhan , Wan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244
Shiqi Xu , Zi Ye , Shuang Shang , Fengge Wang , Huan Zhang , Lianguo Chen , Hao Lin , Chen Chen , Fang Hua , Chong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Lingling Su , Qunyan Wu , Congzhi Wang , Jianhui Lan , Weiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402
Jingwen Zhao , Jianpu Tang , Zhen Cui , Limin Liu , Dayong Yang , Chi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303
Huangjie Lu , Yingzhe Du , Peng Lin , Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344
Hao-Cong Li , Ming Zhang , Qiyan Lv , Kai Sun , Xiao-Lan Chen , Lingbo Qu , Bing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Feng Cao , Chunxiang Xian , Tianqi Yang , Yue Zhang , Haifeng Chen , Xinping He , Xukun Qian , Shenghui Shen , Yang Xia , Wenkui Zhang , Xinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575
(a): R0.5 and Lc, a of all char samples; (b): R0.5 and N of all char samples; (c): R0.5 and Lc, a of chars where the abnormal sample was removed; (d): R0.5 and N of chars where the abnormal sample was removed