Citation: Li Qian. Research Progress in Molecular Keypad Lock Based on Optical Probes[J]. Chemistry, ;2018, 81(6): 493-500. shu

Research Progress in Molecular Keypad Lock Based on Optical Probes

  • Received Date: 22 January 2018
    Accepted Date: 3 March 2018

Figures(6)

  • Molecular keypad locks as a new kind of molecular logic gate, its signal output depends not only on the proper combination of the inputs but also on the correct order, which could protect information at molecular level. Optical probes are predominantly attractive due to their simplicity, high degree of specificity, low detection limits, easy on-line analysis and especial colorimetric recognition and in situ detection. The molecular keypad locks based on optical probes, including cation input, anion input and cation/anion input keypad locks, etc are highlighted. In the end, the development tendency of molecular keypad locks is prospected.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

      J Andreasson, U Pischel. Chem. Soc. Rev., 2015, 44:1053-1069. 

    4. [4]

      K Szaciłowski. Chem. Rev., 2008,108:3481-3548. 

    5. [5]

       

    6. [6]

       

    7. [7]

      O Lustgarten, L Motiei, D Margulies. ChemPhysChem, 2017, 18(13):1678-1687. 

    8. [8]

      C P Carvalho, Z Domínguez, J P Da Silva et al. Chem. Commun., 2015, 51:2698-2701. 

    9. [9]

      X Yu, M Li, T Li et al. Nanoscale, 2016, 8(48):20027-20036. 

    10. [10]

      L Wang, W Lian, H Liu. Chem. Eur. J., 2016, 22(14):4825-4832. 

    11. [11]

      J Zhu, X Yang, L Zhang et al. Chem. Commun., 2013,49(48):5459-5461. 

    12. [12]

      Z Zhou,Y Liu, S Dong. Chem. Commun., 2013, 49(30):3107-3109. 

    13. [13]

      F Pu, Z Liu, J Ren et al. Chem. Commun., 2013, 49(23):2305-2307. 

    14. [14]

      Y Liu, J Ren, Y Qin et al. Chem. Commun., 2012,48(6):802-804. 

    15. [15]

      W Hong, Y Du, T Wang et al. Chem. Eur. J., 2012,18(47):14939-14942. 

    16. [16]

      F Pu, Z Liu, X Yang et al. Chem. Commun., 2011, 47(21):6024-6026. 

    17. [17]

      M Zhou, X Zheng, J Wang et al. Chem. Eur. J., 2010, 16(26):7719-7724. 

    18. [18]

      J Halámek, T K Tam, G Strack et al. Chem. Commun., 2010,46(14):2405-2407. 

    19. [19]

      W Sun, C Zhou, C Xu et al. Chem. Eur. J., 2008, 14(21):6342-6351. 

    20. [20]

      G Strack, M Ornatska, M Pita et al. J. Am. Chem. Soc., 2008, 130(13):4234-4235. 

    21. [21]

      D Margulies, C E Felder, G Melman et al. J. Am. Chem. Soc., 2007, 129(2):347-354. 

    22. [22]

      Z Guo, W Zhu, L Shen et al. Angew. Chem. Int. Ed., 2007, 46(29):5549-5553. 

    23. [23]

      X Chen, T Pradhan, F Wang et al. Chem. Rev., 2012,112(3):1910-1956. 

    24. [24]

      Y Wang, Y Huang, B Li et al. RSC Adv., 2011, 1(7):1294-1300. 

    25. [25]

      T Mistri, R Alam, R Bhowmick et al. Analyst, 2014, DOI:10.1039/C3AN02255B. 

    26. [26]

      T Mistri, R Alam, R Bhowmick et al. New J. Chem., 2016, 40(1):330-339. 

    27. [27]

       

    28. [28]

      S Chen, Z Guo, S Zhu et al. ACS Appl. Mater. Interf., 2013, 5(12):5623-5629. 

    29. [29]

      J He, J He, T Wang et al. J. Mater. Chem. C, 2014, 2(36):7531-7540. 

    30. [30]

      N Boens, V Leen, W Dehaen. Chem. Soc. Rev., 2012, 41(3):1130-1172. 

    31. [31]

      Q Li, Y Yue, Y Guo et al. Sens. Actuat. B, 2012, 173:797-801. 

    32. [32]

      Q Li, Z Wang, J Xu et al. RSC Adv., 2014, 4(65):34470. 

    33. [33]

      H Tavallali, G Deilamy-Rad, A Parhami et al. J. Hazard. Mater., 2014, 266:189-197. 

    34. [34]

      T Wei, W Li, Q Li et al. RSC Adv., 2016, 6(49):43832. 

    35. [35]

      Q Zou, X Li, J Zhang et al. Chem. Commun., 2012, 48(15):2095-2097. 

    36. [36]

      S Sharma, T Virk, C Pradeep et al. Eur. J. Inorg. Chem., 2017, (18):2457-2463. 

    37. [37]

      M Suresh, A Ghosh, A Das. Chem. Commun., 2008, 44(33):3906-3908. 

    38. [38]

      S Kumar, V Luxami, R Saini et al. Chem. Commun., 2009, 45(21):3044-3046. 

    39. [39]

      P Singh, J Kaur, W Holzer et al. Sens. Actuat. B, 2010, 150:50-56. 

    40. [40]

      V Bhalla, Roopa, M Kumar. Dalton Transac., 2013, 42(37):13390-13396. 

    41. [41]

      M Kumar, A Dhir, V Bhalla. Org. Lett.,2009, 11(12):2567-2570. 

    42. [42]

      K Rezaeian, H Khanmohammadi. Supramol. Chem., 2016, 28(3-4):256-266. 

    43. [43]

      V Bhalla, V Vij, M Kumar et al. Org. Lett., 2012, 14(4):1012-1015. 

    44. [44]

      J Wang, C Ha. Analyst, 2010, 135(6):1214-1218. 

    45. [45]

      V Bhalla, Roopa, M Kumar. Org. Lett., 2012,14(11):2802-2805. 

    46. [46]

      X Jiang, D Ng. Angew. Chem. Int. Ed., 2014, 53(39):10481-10484. 

    47. [47]

      B Rout, P Milko, M Iron et al. J. Am. Chem. Soc., 2013, 135(41):15330-15333. 

    48. [48]

      J Andréasson, S Straight, T Moore et al. Chem. Eur. J., 2009, 15(16):3936-3939. 

    49. [49]

      J Andréasson, U Pischel, S Straight et al. J. Am. Chem. Soc., 2011, 133(30):11641-11648. 

  • 加载中
    1. [1]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    2. [2]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    3. [3]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    4. [4]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    5. [5]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    6. [6]

      Qi Wang Yicong Gao Feng Lu Quli Fan . Preparation and Performance Characterization of the Second Near-Infrared Phototheranostic Probe: A New Design and Teaching Practice of Polymer Chemistry Comprehensive Experiment. University Chemistry, 2024, 39(11): 342-349. doi: 10.12461/PKU.DXHX202404141

    7. [7]

      Meirong HANXiaoyang WEISisi FENGYuting BAI . A zinc-based metal-organic framework for fluorescence detection of trace Cu2+. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1603-1614. doi: 10.11862/CJIC.20240150

    8. [8]

      Yuan ZHUXiaoda ZHANGShasha WANGPeng WEITao YI . Conditionally restricted fluorescent probe for Fe3+ and Cu2+ based on the naphthalimide structure. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 183-192. doi: 10.11862/CJIC.20240232

    9. [9]

      Shuwen SUNGaofeng WANG . Design and synthesis of a Zn(Ⅱ)-based coordination polymer as a fluorescent probe for trace monitoring 2, 4, 6-trinitrophenol. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 753-760. doi: 10.11862/CJIC.20240399

    10. [10]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    11. [11]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Xinyi Hong Tailing Xue Zhou Xu Enrong Xie Mingkai Wu Qingqing Wang Lina Wu . Non-Site-Specific Fluorescent Labeling of Proteins as a Chemical Biology Experiment. University Chemistry, 2024, 39(4): 351-360. doi: 10.3866/PKU.DXHX202310010

    14. [14]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    15. [15]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    16. [16]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    17. [17]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    18. [18]

      Cen Zhou Biqiong Hong Yiting Chen . Application of Electrochemical Techniques in Supramolecular Chemistry. University Chemistry, 2025, 40(3): 308-317. doi: 10.12461/PKU.DXHX202406086

    19. [19]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    20. [20]

      Jia Yao Xiaogang Peng . Theory of Macroscopic Molecular Systems: Theoretical Framework of the Physical Chemistry Course in the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 27-37. doi: 10.12461/PKU.DXHX202408117

Metrics
  • PDF Downloads(4)
  • Abstract views(485)
  • HTML views(45)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return