Citation: SHI Qi-qi, WANG Yu-ting, SHEN Bo-xiong, ZHANG Xiao. Synthesis of hierarchical porous carbon loaded with chlorine and its mercury removal performance[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 1000-1007. shu

Synthesis of hierarchical porous carbon loaded with chlorine and its mercury removal performance

  • Corresponding author: SHEN Bo-xiong, shenbx@hebut.edu.cn ZHANG Xiao, zhangxiao@hebut.edu.cn
  • Received Date: 12 March 2019
    Revised Date: 12 May 2019

    Fund Project: Tangshan Science and Technology Project 18130211ATianjin Science Popularization Project 18KPXMSF00080Tianjin Natural Science Foundation Key Project 18JCZDJC39800the National Natural Science Foundation Youth Project 51808181The project was supported by the National Natural Science Foundation Youth Project (51808181), Tianjin Natural Science Foundation Key Project (18JCZDJC39800), Tianjin Science and Technology Major Special Project and Engineering (18ZXSZSF00040), Tianjin Science Popularization Project (18KPXMSF00080), Tianjin Platform Project (18PTZWHZ00010) and Tangshan Science and Technology Project (18130211A)Tianjin Platform Project 18PTZWHZ00010Tianjin Science and Technology Major Special Project and Engineering 18ZXSZSF00040

Figures(7)

  • Chlorine-loaded hierarchical porous bio-char was prepared by co-pyrolysis using nano-CaCO3 as template and rice straw as carbon precursor. The removal of mercury (Hg0) from flue gas by porous materials was studied on a fixed bed test bench with simulated flue gas. The materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), N2 adsorption-desorption (BET), temperature programmed desorption (Hg-TPD) and X-ray photoelectron spectroscopy (XPS). The results show that HCl impregnation not only removes the products on the template to form porous structures but also effectively loads chlorine onto the surface of the material. The specific surface area and total pore volume of B1C1-Cl2 are 398.1 m2/g and 0.4923 cm3/g, respectively. When the GHSV is 225000 h-1 at 120 ℃, the removal efficiency of Hg0 by chemical adsorption is up to 95%. The porous structure is beneficial to gas diffusion and the high specific surface area can provide more active sites. The covalent groups (C-Cl) participating in the Hg0 removal process are the dominant chemical adsorption sites on the inner micro-mesopore surface.
  • 加载中
    1. [1]

      GAO Lan-jun, WANG Fu-mei, WU Han-ming, PAN Yi-jun, SHEN Bo-xiong. Synthesis of mesoprous materials with Ce-Co/KIT-6 and its mercury removal performance[J]. J Fuel Chem Technol, 2017,45(8):1017-1024. doi: 10.3969/j.issn.0253-2409.2017.08.016 

    2. [2]

      ZHOU Q, DUAN Y F, CHEN M M, LIU M, LU P. Studies on mercury adsorption species and equilibrium on activated carbon surface[J]. Energy Fuels, 2017,31(12):14211-14218. doi: 10.1021/acs.energyfuels.7b02699

    3. [3]

      LI H L, WU C Y, LI Y, ZHANG J Y. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B:Environ, 2012,111/112:381-388. doi: 10.1016/j.apcatb.2011.10.021

    4. [4]

      XU Y, ZENG X B, LUO G Q, ZHANG B, XU P, XU M H, YAO H. Chlorine-char composite synthesized by co-pyrolysis of biomass wastes and polyvinyl chloride for elemental mercury removal[J]. Fuel, 2016,183:73-79. doi: 10.1016/j.fuel.2016.06.024

    5. [5]

      LI G L, WANG S X, WANG F M, WU Q R, TANG Y, SHEN B X. Role of inherent active constituents on mercury adsorption capacity of chars from four solid wastes[J]. Chem Eng J, 2017,307:544-552. doi: 10.1016/j.cej.2016.08.106

    6. [6]

      WU J, LI Z, SONG Y. Preparation of biomass-derived hierarchically porous carbon/Co3O4 nanocomposites as anode materials for lithium-ion batteries[J]. J Alloy Compd, 2016,656:745-752. doi: 10.1016/j.jallcom.2015.10.063

    7. [7]

      XU B, HOU S S, ZHANG F, ZHANG F L, CAO G P, CHU M, YANG Y S. Nitrogen-doped mesoporous carbon derived from biopolymer as electrode material for supercapacitors[J]. J Electroanal Chem, 2014,712:146-150. doi: 10.1016/j.jelechem.2013.11.020

    8. [8]

      ISLAM M A, TAN I A W, BENHOURIA A, BEN A, ASIF M, HAMEED B H. Mesoporous and adsorptive properties of palm date seed activated carbon prepared via sequential hydrothermal carbonization and sodium hydroxide activation[J]. Chem Eng J, 2015,270:187-195. doi: 10.1016/j.cej.2015.01.058

    9. [9]

      ZHAO P F, GUO X, ZHENG C G. Removal of elemental mercury by iodine-modified rice husk ash sorbents[J]. J Environ Sci-China, 2010,22(10):1629-1636. doi: 10.1016/S1001-0742(09)60299-0

    10. [10]

      XU B, PENG L, WANG G, CAO G P, WU F. Easy synthesis of mesoporous carbon using nano-CaCO3 as template[J]. Carbon, 2010,48(8):2377-2380. doi: 10.1016/j.carbon.2010.03.003

    11. [11]

      CAO B, LIU H, XU B, LEI Y F, CHEN X H, SONG H H. Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance[J]. J Mater Chem A, 2016,4(17):6472-6478. doi: 10.1039/C6TA00950F

    12. [12]

      LI G L, SHEN B X, LI Y W, ZHAO B, WANG F M, HE C, WANG Y Y, ZHANG M. Removal of element mercury by medicine residue derived biochars in presence of various gas compositions[J]. J Hazard Mater, 2015,298:162-169. doi: 10.1016/j.jhazmat.2015.05.031

    13. [13]

      ZU G Q, SHEN J, ZOU L O, WANG F, WANG X D, ZHANG Y W, YAO X D. Nanocellulose-derived highly porous carbon aerogels for supercapacitors[J]. Carbon, 2015,99:203-211.  

    14. [14]

      KONG L J, LIU M X, DIAO Z H, CHEN D Y, CHANG X Y, XIONG Y. Coupling template nanocasting and self-activation for fabrication of nanoporous carbon[J]. Sci Rep, 2016,638176. doi: 10.1038/srep38176

    15. [15]

      WANG T, WU J W, ZHANG Y S, LIU J, SUI Z F, ZHANG H C, CHEN W Y, NORRIS P, PAN W P. Increasing the chlorine active sites in the micropores of biochar for improved mercury adsorption[J]. Fuel, 2018,229:60-67. doi: 10.1016/j.fuel.2018.05.028

    16. [16]

      GHORISHI S B, KEENEY R M, SERRE S D. Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury[J]. Environ Sci Technol, 2002,36(20):4454-4459. doi: 10.1021/es0255608

    17. [17]

      LI G L, WANG S X, WU Q R, WANG F Y, SHEN B X. Mercury sorption study of halides modified bio-chars derived from cotton straw[J]. Chem Eng J, 2016,302:305-313. doi: 10.1016/j.cej.2016.05.045

    18. [18]

      IRIARTE-VELASCO U, SIERRA I, ZUDAIRE L, AYASTUY J L. Preparation of a porous biochar from the acid activation of pork bones[J]. Food Bioprod Process, 2016,98:341-353. doi: 10.1016/j.fbp.2016.03.003

    19. [19]

      LI G L, WANG S X, WU Q G, WA NG, F Y, DING D, SHEN B X. Mechanism identification of temperature influence on mercury adsorption capacity of different halides modified bio-chars[J]. Chem Eng J, 2017,315:251-261. doi: 10.1016/j.cej.2017.01.030

    20. [20]

      LI G L, SHEN B X, WANG Y, YUE S J, XI Y Q, AN M D, REN K K. Comparative study of element mercury removal by three bio-chars from various solid wastes[J]. Fuel, 2015,145:189-195. doi: 10.1016/j.fuel.2014.12.083

    21. [21]

      SANO A, TAKAOKA M, SHIOTA K. Vapor-phase elemental mercury adsorption by activated carbon co-impregnated with sulfur and chlorine[J]. Chem Eng J, 2017,315:598-607. doi: 10.1016/j.cej.2017.01.035

    22. [22]

      LEE S F, SEO Y C, JURNG J, LEE T G. Removal of gas-phase elemental mercury by iodine- and chlorine-impregnated activated carbons[J]. Atmos Environ, 2004,38(29):4887-4893. doi: 10.1016/j.atmosenv.2004.05.043

    23. [23]

      XU Y, ZENG X B, ZHANG B, ZHU X Q, ZHOU M L, ZOU R J, SUN P, LUO G Q, YAO H. Experiment and kinetic study of elemental mercury adsorption over a novel chlorinated sorbent derived from coal and waste polyvinyl chloride[J]. Energy Fuels, 2016,30(12):10635-10642. doi: 10.1021/acs.energyfuels.6b01372

    24. [24]

      XU Y, LUO G Q, HE S W, DENG F F, PANG Q, XU Y Q, YAO H. Efficient removal of elemental mercury by magnetic chlorinated biochars derived from co-pyrolysis of Fe(NO3)3-laden wood and polyvinyl chloride waste[J]. Fuel, 2019,239:982-990. doi: 10.1016/j.fuel.2018.11.102

    25. [25]

      ZHAO Peng-fei, GUO Xin, ZHENG Chu-guang. Investigating the mechanism of elemental mercury binding on activated carbon and chlorine-embedded activated carbon[J]. Proc CSEE, 2010,30(23):40-44.  

  • 加载中
    1. [1]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    7. [7]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    10. [10]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    11. [11]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    12. [12]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    13. [13]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    14. [14]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    15. [15]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    16. [16]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    17. [17]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    18. [18]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    19. [19]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    20. [20]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

Metrics
  • PDF Downloads(8)
  • Abstract views(504)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return