Citation: LI Peng-fei, QU Xuan, ZHANG Rong, BI Ji-cheng. Effect of potassium carbonate on coal ash sintering and mineral transformation in H2O-H2-CO-CO2 atmosphere[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1047-1054. shu

Effect of potassium carbonate on coal ash sintering and mineral transformation in H2O-H2-CO-CO2 atmosphere

  • Corresponding author: ZHANG Rong, zrbd@sxicc.ac.cn
  • Received Date: 1 August 2020
    Revised Date: 28 August 2020

    Fund Project: The project was supported by National Natural Science Foundation of China 21576275The project was supported by National Natural Science Foundation of China (21576275) and NSFC-Xinjiang joint fund (U1703253)NSFC-Xinjiang joint fund U1703253

Figures(8)

  • The influence of reaction pressure on the sintering temperature of potassium carbonate loaded coal ash was investigated in H2O-H2-CO-CO2 atmosphere. An empirical equation for sintering temperature calculation was derived based on the content of ash, the ash composition, the catalyst loading and the reaction pressure. The deviation between the calculated value and the experimental value was within ±15 ℃ (2%). The transformation of two coal ashes was investigated by X-ray diffractometer and thermodynamic calculation. It was found that potassium carbonate could react with anhydrite and calcite in coal to produce potassium sulfate and butschliite. The potassium sulfate and hematite could be reduced in the H2O-H2-CO-CO2 atmosphere, and the decomposition temperature of butschliite increased with the increase of pressure. Moreover, the content of potassium hydroxide in the potassium loaded coal ash increased with the increase of temperature and pressure. The minimum sintering temperatures of coal ash under different pressures were related to the content of potassium hydroxide; when the contents of potassium hydroxide in ashes reached to a certain value, the calculated minimum sintering temperature was very close to the experimental one under different pressures.
  • 加载中
    1. [1]

      HIRSCH R L, GALLAGHER J E Jr, LESSARD R R, WESSELHOFT R D. Catalytic coal gasification:An emerging technology[J]. Science, 1982,215(4529):121-127. doi: 10.1126/science.215.4529.121

    2. [2]

      VERAA M J, BELL A T. Effect of alkali metal catalysts on gasification of coal char[J]. Fuel, 1978,57(4):194-200.  

    3. [3]

      YEBOAH Y D, XU Y, SHETH A, GODAVARTY A, AGRAWAL P K. Catalytic gasification of coal using eutectic salts:identification of eutectics[J]. Carbon, 2003,41(2):203-214.

    4. [4]

      FAN Li-xia, LI Ke-zhong, ZHANG Rong, BI Ji-cheng. Methanation of CO over coal char loaded with K2CO3[J]. J Fuel Chem Technol, 2014,42(9):1047-1052.  

    5. [5]

      LI Wei-wei, LI Ke-zhong, KANG Shou-guo, ZHENG Yan, ZHANG Rong, BI Ji-cheng. Heterogeneous reaction kinetics of catalytic coal gasification[J]. J Fuel Chem Technol, 2014,42(3):290-296.  

    6. [6]

      MAO Yan-dong, JIN Ya-dan, LI Ke-zhong, BI Ji-cheng, LI Jin-lai, XIN Feng. Analysis of influencing factors on sintering temperature of Inner Mongolia Wangjiata bituminous coal ash during catalytic coal gasification[J]. CIESC J, 2015,66(3):1080-1087.  

    7. [7]

      MAO Yan-dong, JIN Ya-dan, LI Ke-zhong, BI Ji-cheng, LI Jin-lai, XIN Feng. Sintering behavior of different coal ashes in catalytic coal gasification process[J]. J Fuel Chem Technol, 2015,43(4):402-409.  

    8. [8]

      SHA Xing-zhong, YANG Nan-xing. Coal Gasification and Its Application[M]. Shanghai:East China University of Science and Technology Press, 1995.

    9. [9]

      LU Tao. Fundamental research on agglomeration and potassium migration characteristics during catalytic coal gasification[D]. Taiyuan: Institute of Coal Chemistry, Chinese Academy of Sciences, 2015. 

    10. [10]

      WANG Qin-hui, JIE Tao, LI Xiao-min, LUO Zhong-yang, JING Ni-jie, CEN Ke-fa. Experiments of the effects of reaction atmosphere on the coal ash sintering temperature[J]. J Fuel Chem Technol, 2010,38(1):17-22.  

    11. [11]

      LI Feng-hai, HUANG Jie-jie, FANG Yi-tian, WANG Yang. Research on the influencing factors of sintering temperature of Xiaolongtan lignite ashes[J]. Clean Coal Technol, 2011,17(3):57-60.  

    12. [12]

      WANG Qin-hui, JING Ni-jie, LUO Zhong-yang, LI Xiao-min, JIE Tao. Experiments on the effect of chemical components of coal ash on the sintering temperature[J]. J China Coal Soc, 2010,35(6):1015-1020.  

    13. [13]

      HU H W, ZHOU K, MENG K S, SONG L B, LIN Q Z. Effects of SiO2/Al2O3 ratios on sintering characteristics of synthetic coal ash[J]. Energies, 2017,10(2)242.  

    14. [14]

      CHENG X L, WANG Y G, LIN X C, BI J C, ZHANG R, BAI L. Effects of SiO2-Al2O3-CaO/FeO low-temperature eutectics on slagging characteristics of coal ash[J]. Energy Fuels, 2017,31(7):6748-6757. doi: 10.1021/acs.energyfuels.7b00535

    15. [15]

      LU T, LI K Z, ZHANG R, BI J C. Addition of ash to prevent agglomeration during catalytic coal gasification in a pressurized fluidize bed[J]. Fuel Process Technol, 2015,134:414-423. doi: 10.1016/j.fuproc.2015.02.024

    16. [16]

      WANG L, HUSTAD J E, GRONLI M. Sintering characteristics and mineral transformation behaviors of corn cob ashes[J]. Energy Fuels, 2012,26(9):5905-5916. doi: 10.1021/ef300215x

    17. [17]

      JING N J, WANG Q H, CHENG L M, LUO Z Y, CEN K F. The sintering behavior of coal ash under pressurized conditions[J]. Fuel, 2013,103:87-93. doi: 10.1016/j.fuel.2011.09.025

    18. [18]

      JING N J, WANG Q H, LUO Z Y, CEN K F. Effect of chemical composition on sintering behavior of Jincheng coal ash under gasification atmosphere[J]. Chem Eng Commun, 2012,199(2):189-202.  

    19. [19]

      ZHENG Shao-cong, NING Ping, MA Li-ping, DU Ya-lei, ZHANG Wei, NIU Xue-kui. Reaction properties of thermal decomposition of phosphogypsum in different atmospheres[J]. J Wuhan Univ Technol (Transp Sci Eng), 2010,34(3):580-583.  

    20. [20]

      CHEN Sheng, LIU Shao-wen. Thermodynamic study on reductive decomposition of calcium sulfate with hydrogen[J]. J Chem Ind Eng, 2012,33(5):7-11.  

    21. [21]

      ENNACIRI Y, EL ALAOUI-BELGHITI H, BETTACH M. Comparative study of K2SO4 production by wet conversion from phosphogypsum and synthetic gypsum[J]. J Mater Res Technol, 2019,8(3):2586-2596.  

    22. [22]

      AREFIEV A V, PODBORODNIKOV I V, SHATSKIY A F, LITASOV K D. Synthesis and Raman spectra of K-Ca double carbonates:K2Ca(CO3)2 butschliite, fairchildite, and K2Ca2(CO3)3 at 1 atm[J]. Geochem Int, 2019,57(9):981-987. doi: 10.1134/S0016702919090039

    23. [23]

      ARCEO H B, GLASSER F P. Fluxing reactions of sulfates and carbonates in cement clinkering III. The system CaCO3-K2CO3[J]. Cement Concrete Res, 1995,25(2):339-344.  

  • 加载中
    1. [1]

      Tiancheng Yang Yang Yang Chunhua Qu Rui Chu Yue Xia . Wandering through the Kingdom of Chinese Mineral Medicines. University Chemistry, 2024, 39(9): 94-101. doi: 10.12461/PKU.DXHX202403015

    2. [2]

      Jiangjuan Shao Xuan Li Jingdan Weng Xiaolei Chen Fei Xu Yulu Ma Nianguang Li Shizhong Zheng . Improvement in the Experimental Teaching Design of Physical and Chemical Identification and Quantification of Mineral Drugs. University Chemistry, 2024, 39(10): 137-142. doi: 10.3866/PKU.DXHX202312079

    3. [3]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    4. [4]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    5. [5]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    6. [6]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    7. [7]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    8. [8]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    9. [9]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    10. [10]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    11. [11]

      Changyan Sun Hualei Zhou Bin Dong . Application of “PBL” Teaching Mode in Inorganic Chemistry Experimental Education in the Perspective of Course Ideology and Politics: Taking Preparation of Manganese Carbonate as an Example. University Chemistry, 2024, 39(11): 378-383. doi: 10.12461/PKU.DXHX202402016

    12. [12]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    13. [13]

      Ying Zhang Fang Ge Zhimin Luo . AI-Driven Biochemical Teaching Research: Predicting the Functional Effects of Gene Mutations. University Chemistry, 2025, 40(3): 277-284. doi: 10.12461/PKU.DXHX202412104

    14. [14]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    19. [19]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(6)
  • Abstract views(856)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return