Citation: CHENG Jiang-hao, SU Ya-xin, LIN Rui, ZHANG Xian-wei, WEN Ni-ni, DENG Wen-yi, ZHOU Hao. Experimental study on the selective catalytic reduction of NO by C3H6 over Cu modified Fe/Al-PILC catalysts[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(7): 823-833. shu

Experimental study on the selective catalytic reduction of NO by C3H6 over Cu modified Fe/Al-PILC catalysts

  • Corresponding author: SU Ya-xin, suyx@dhu.edu.cn
  • Received Date: 28 March 2019
    Revised Date: 10 May 2019

    Fund Project: National Natural Science Foundation of China 51278095Jiangsu Province Natural Science Foundation BK20181161The project was supported by Jiangsu Province Natural Science Foundation (BK20181161), the Fundamental Research Funds for the Central Universities (2232019D3-24), and National Natural Science Foundation of China (51278095)the Fundamental Research Funds for the Central Universities 2232019D3-24

Figures(9)

  • In order to improve the low temperature activity of Fe/Al-PILC catalysts for SCR of NO, copper doping was used for the modification. xCu-Fe/Al-PILC catalysts were prepared by ultrasonic impregnation technique and characterized by XRD, N2 adsorption-desorption, H2-TPR, UV-vis, XPS and Py-FTIR. The SCR of NO with C3H6 tests were carried out in a fixed bed reactor. The experimental results showed that the xCu-Fe/Al-PILC catalysts can effectively solve the problem of insufficient SCR activity of Fe/Al-PILC catalysts at low temperature and as well as improve the activity at medium and high temperature. High NO reduction efficiency, 80% and beyond could be achieved at a wide temperature range of 200-500℃ by the catalysts, among which 0.13Cu-Fe/Al-PILC exhibited 90% of the NO conversion at 250-500℃ and maximum NO reduction efficiency of 93% at 250℃. XRD and N2 adsorption-desorption results proved that the catalysts modified by copper provided more active sites and increased the reaction rate. The results of H2-TPR indicated that the doping of copper improved the catalyst's redox ability at lower temperature, while enhanced the catalyst's redox ability at medium and high temperature. UV-vis and XPS study showed that the doping of copper not only increased the higher oxidation state of iron but also produced more isolated Fe3+ which is the low-temperature active species. Py-FTIR test illustrated that Lewis acid and Brönsted acid existed simultaneously on the catalyst surface, and Lewis acid sites were the activity center of the SCR reaction.
  • 加载中
    1. [1]

      IWAMOTO M, YAHIRO H, YU U Y. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over copper ion-exchanged zeolites[J]. Cataly, 1990,32(6):430-433.

    2. [2]

      HELD W, KOENIG A, RICHTER T, PUPPE L. Catalytic NOx reduction in net oxidizing exhaust gas[J]. SAE Trans, 1990,99(4):209-216.

    3. [3]

      GU H, CHUN K M, SONG S. The effects of hydrogen on the efficiency of NOx reduction via hydrocarbon-selective catalytic reduction (HC-SCR) at low temperature using various reductants[J]. Int J Hydrogen Energy, 2015,40(30):9602-9610. doi: 10.1016/j.ijhydene.2015.05.070

    4. [4]

      LI L D, GUAN N J. HC-SCR reaction pathways on ion exchanged ZSM-5 catalysts[J]. Microporous Mesoporous Mater, 2009,117(1/2):450-457.

    5. [5]

      SCHURICHT F, RESCHETILOWSKI W. Simultaneous selective catalytic reduction (SCR) of NOx and N2O over Ag/ZSM-5-catalytic studies and mechanistic implications[J]. Microporous Mesoporous Mater, 2012,164:135-144. doi: 10.1016/j.micromeso.2012.07.018

    6. [6]

      YAN S H, WANG X P, WANG W C, LIU Z Q, NIU J H. Selective catalytic reduction of NO by C2H2 over Ce-Al2O3 catalyst with rate-determining step of NO oxidation[J]. J Nat Gas Chem, 2012,21(3):332-338. doi: 10.1016/S1003-9953(11)60373-3

    7. [7]

      MORE P M, NGUYEN D L, GRANGER P, DUJARDIN C, DONGARE M K, UMBARKAR S B. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature HC-SCR of NOx for lean burn engine exhaust[J]. Appl Catal B:Environ, 2015,174-175:145-156. doi: 10.1016/j.apcatb.2015.02.035

    8. [8]

      ZHOU Hao, SU Ya-xin, DENG Wen-yi, ZHONG Fang-chuan. A review of HC-SCR over metal oxides-based catalysts[J]. Environ Sci Technol, 2016,39(1):94-100.  

    9. [9]

      ZHOU Hao, SU Ya-xin, DENG Wen-yi, ZHONG Fang-chuan. A review of HC-SCR over metal-based zeolite catalysts[J]. Environ Sci Technol, 2015,38(10):64-73.  

    10. [10]

      WANG Qi-ying, WEN Yan-bing, DONG Xin-fa, LIN Wei-ming. Application of pillared clays in selective catalytic reduction of NOx by C3H6[J]. J Chem Eng Chin Univ, 2006,4(20):598-603.  

    11. [11]

      MENDIOROZ S, MART N-ROJO A B, RIVERA F, MART N J C, BAHAMONDE A, YATES M. Selective catalytic reduction of NOx by methane in excess oxygen over Rh based aluminium pillared clays[J]. Appl Catal B:Environ, 2006,64(3/4):161-170.  

    12. [12]

      YANG R T, THARAPPIWATTANANON N, LONG R Q. Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen[J]. Appl Catal B:Environ, 1998,19(3/4):289-304.  

    13. [13]

      KONIN G A, IŁICHEV A N, MATYSHAK V A, KHOMENKO T I, KORCHAK V N, SADYKOV V A, DORONIN V P, BUNINA R V, ALIKINA G M, KUZNETSOVA T G, PAUKSHTIS E A, FENELONOV V B, ZAIKOVSKⅡ V I, IVANOVA A S, BELOSHAPKIN S A, ROZOVSKⅡ A Y, TRETYAKOV V F, ROSS J R H, BREEN J P. Cu, Co, Ag-containing pillared clays as catalysts for the selective reduction of NOx by hydrocarbons in an excess of oxygen[J]. Top Catal, 2001,16/17(1/4):193-197. doi: 10.1023/A:1016667822516

    14. [14]

      ZHOU H, LI K K, ZHAO B T, DENG W Y, SU Y X, ZHONG F C. Surface properties and reactivity of Fe/Al2O3/cordierite catalysts for NO reduction by C2H6:Effects of calcination temperature[J]. Chem Eng J, 2017,326:737-744. doi: 10.1016/j.cej.2017.06.018

    15. [15]

      ZHOU H, SU Y X, LIAO W Y, DENG W Y, ZHONG F C. Preparation, characterization, and properties of monolithic Fe/Al2O3/cordierite catalysts for NO reduction with C2H6[J]. Appl Catal A:Gen, 2015,505:402-409. doi: 10.1016/j.apcata.2015.08.025

    16. [16]

      SU Ya-xin, LU Zhe-xing, ZHOU Hao, DOU Yi-feng, DENG Wen-yi. Experimental study on NO reduction by propane over iron[J]. J Fuel Chem Technol, 2014,42(12):1470-1476. doi: 10.3969/j.issn.0253-2409.2014.12.009 

    17. [17]

      SU Ya-xin, SU A-long, CHENG Hao. Experimental study on direct catalytic reduction of NO by metallic iron[J]. J China Coal Soc, 2013,38(s1):206-210.  

    18. [18]

      QIAN Wen-yan, SU Ya-xin, YANG Xi, YUAN Min-hao, DENG Wen-yi, ZHAO Bing-tao. Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays[J]. J Fuel Chem Technol, 2017,45(12):1499-1507. doi: 10.3969/j.issn.0253-2409.2017.12.012 

    19. [19]

      YUAN M H, DENG W Y, DONG S L, LI Q C, ZHAO B T, SU Y X. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chem Eng J, 2018,353:839-848. doi: 10.1016/j.cej.2018.07.201

    20. [20]

      DONG Shi-lin, SU Ya-xin, LIU Xin, LI Qian-cheng, YUAN Min-hao, ZHOU Hao, DENG Wen-yi. Experimental study on selective catalytic reduction of NO by C3H6 over Fe/Ti-PILC catalysts[J]. J Fuel Chem Technol, 2018,46(10):1231-1239. doi: 10.3969/j.issn.0253-2409.2018.10.011 

    21. [21]

      SATO S, YU-U Y, YAHIRO H, MIZUNO N, IWAMOTO M. Cu-ZSM-5 zeolite as highly active catalyst for removal of nitrogen monoxide from emission of diesel engines[J]. Appl Catal, 1991,70(1):L1-L5.

    22. [22]

      LI X Y, LU G, QU Z P, ZHANG D K, LIU S M. The role of titania pillar in copper-ion exchanged titania pillared clays for the selective catalytic reduction of NO by propylene[J]. Appl Catal A:Gen, 2011,398(1/2):82-87.  

    23. [23]

      LU G, LI X Y, QU Z P, ZHAO Q D, ZHAO L, CHEN G H. Copper-ion exchanged Ti-pillared clays for selective catalytic reduction of NO by propylene[J]. Chem Eng J, 2011,168(3):1128-1133. doi: 10.1016/j.cej.2011.01.095

    24. [24]

      DORADO F, GARCÍA P B, DE LUCAS A, RAMOS M J, ROMERO A. Hydrocarbon selective catalytic reduction of NO over Cu/Fe-pillared clays:Diffuse reflectance infrared spectroscopy studies[J]. J Mol Catal A:Chem, 2010,332(1/2):45-52.

    25. [25]

      ZHU Bin, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Synergetic effect of Cu-Fe composite oxides supported on Al-PILC for SCR of NO with NH3[J]. J Fuel Chem Technol, 2014,42(9):1102-1110. doi: 10.3969/j.issn.0253-2409.2014.09.011 

    26. [26]

      VALVERDE J L, DE LUCAS A, SÁNCHEZ P, DORADO F, ROMERO A. Cation exchanged and impregnated Ti-pillared clays for selective catalytic reduction of NOx by propylene[J]. Appl Catal B:Environ, 2003,43(1):43-56. doi: 10.1016/S0926-3373(02)00274-6

    27. [27]

      WANG Q Y, LIU Z L, WU J R. Effect of preparation methods on Ti-PILCs catalysts in selective catalytic reduction of NO by propylene[J]. Adv Mater Res, 2014,1033/1034:90-94. doi: 10.4028/www.scientific.net/AMR.1033-1034

    28. [28]

      KIM B S, LEE S H, PARK Y T, HAM S W, CHAE H J, NAM I S. Selective catalytic reduction of NOx by propene over copper-exchanged pillared clays[J]. Korean J Chem Eng, 2001,18(5):704-710. doi: 10.1007/BF02706390

    29. [29]

      WEN Yan-bing, DONG Xin-fa, LIN Wei-min. Study on Cu/Ce-Ti-PILC for selective catalytic reduction of NO bypropylen[J]. J Guangzhou Unv(Nat Sci Edi), 2008,7(1):53-57. doi: 10.3969/j.issn.1671-4229.2008.01.012

    30. [30]

      QI G S, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts[J]. Appl Catal A:Gen, 2005,287(1):25-33. doi: 10.1016/j.apcata.2005.03.006

    31. [31]

      KWAK J H, TONKYN R G, KIM D H, SZANYI J, PEDEN C H F. Excellent activity and selectivity of Cu-SSZ-13 in the selective catalytic reduction of NOx with NH3[J]. J Catal, 2010,275(2):187-190.

    32. [32]

      XIA Y, ZHAN W C, GUO Y, GUO Y L, LU G Z. Fe-Beta zeolite for selective catalytic reduction of NOx with NH3:Influence of Fe content[J]. Chin J Catal, 2016,37(12):2069-2078. doi: 10.1016/S1872-2067(16)62534-2

    33. [33]

      DELAHAY G, VALADE D, GUZMANVARGAS A, COQ B. Selective catalytic reduction of nitric oxide with ammonia on Fe-ZSM-5 catalysts prepared by different methods[J]. Appl Catal B:Environ, 2005,55(2):149-155. doi: 10.1016/j.apcatb.2004.07.009

    34. [34]

      LU R J, ZHANG X Y, MA C Y, WANG Z, WANG Y F, HAO Z P. Fe-Beta catalysts prepared by heating wet ion exchange and their catalytic performances on N2O catalytic decomposition and reduction[J]. Asia-Pac J Chem Eng, 2014,9(2):159-166. doi: 10.1002/apj.1754

    35. [35]

      SCHWIDDER M, KUMAR M S, KLEMENTIEV K, POHL M M, BRVCKNER A, GRVNERT W. Selective reduction of NO with Fe-ZSM-5 catalysts of low Fe content. Relations between active site structure and catalytic performance[J]. J Catal, 2005,231(2):314-330.  

    36. [36]

      OLIVEIRA L C A, RIOS R V R A, FABRIS J D, SAPAG K, GARG V K, LAGO R M. Clay-iron oxide magnetic composites for the adsorption of contaminants in water[J]. Appl Clay Sci, 2003,22(4):169-177. doi: 10.1016/S0169-1317(02)00156-4

    37. [37]

      DORADO F, DE LUCAS A, GARCÍA P B, ROMERO A, VALVERDE J L. Copper ion-exchanged and impregnated Fe-pillared clays Study of the influence of the synthesis conditions on the activity for the selective catalytic reduction of NO with C3H6[J]. Appl Catal A:Gen, 2006,305(2):189-196. doi: 10.1016/j.apcata.2006.03.022

    38. [38]

      YANG R T, THARAPPIWATTANANON N, LONG R Q. Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen[J]. Appl Catal B:Environ, 1998,19(3/4):289-304.  

    39. [39]

      JIN Y M, DATYE A K. Phase transformations in iron Fischer-Tropsch catalysts during temperature programmed reduction[J]. J Catal, 2000,196(1):8-17.  

    40. [40]

      SUN M M, CAO Y, LAN L, ZOU S, FANG Z T, CHEN Y Q. Selective catalytic oxidation of ammonia to nitrogen over iron and copper bimetallic catalysts[J]. Acta Phys-Chim Sin, 2014,30(12):2300-2306.  

    41. [41]

      KUMAR M S, SCHWIDDER M, GRVNERT W, BRVCKNER A. On the nature of different iron sites and their catalytic role in Fe-ZSM-5 DeNOx catalysts:New insights by a combined EPR and UV/VIS spectroscopic approach[J]. J Catal, 2004,227(2):384-397.

    42. [42]

      LU L, LI L, WANG X, LI G. Understanding of the finite size effects on lattice vibrations and electronic transitions of nano alpha-Fe2O3[J]. J Phys Chem B, 2005,109(36):17151-17156. doi: 10.1021/jp052780+

    43. [43]

      TIPPINS H H. Charge-transfer spectra of transition-metal ions in corundum[J]. Phys Rev B, 1970,1(1):126-135. doi: 10.1103/PhysRevB.1.126

    44. [44]

      GIORDANINO F, VENNESTROM P N R, LUNDEGAARD L F, STAPPEN F N, MOSSIN S, BEATO P, BORDIGA S, LAMBERTI C. Characterization of Cu-exchanged SSZ-13:A comparative FT-IR, UV-Vis and EPR study with Cu-ZSM-5 and Cu-beta with similar Si/Al and Cu/Al ratios[J]. Dalton Trans, 2013,42(35):12741-12761. doi: 10.1039/c3dt50732g

    45. [45]

      ISMAGILOV Z R, YASHNIK S A, ANUFRIENKO V F, LARINA T V, VASENIN N T, BULGAKOV N N, VOSELET S V, TSYKOZA L T. Linear nanoscale clusters of CuO in Cu-ZSM-5 catalysts[J]. Appl Surf Sci, 2004,226(1/3):88-93.  

    46. [46]

      KIM M H, NAM I-S, KIM Y G. Characteristics of mordenite-type zeolite catalysts deactivated by SO2 for the reduction of NO with hydrocarbons[J]. J Catal, 1998,179(2):350-360.  

    47. [47]

      CHADWICK D, HASHEMI T. Adsorbed corrosion inhibitors studied by electron spectroscopy:Benzotriazole on copper and copper alloys[J]. Corros Sci, 1978,18(1):39-51.

    48. [48]

      GONG J L, YUE H R, ZHAO Y J, ZHAO S, ZHAO L, LV J, WANG S P, MA X B. Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0-Cu+ sites[J]. J Am Chem Soc, 2012,134(34):13922-13925. doi: 10.1021/ja3034153

    49. [49]

      GUO H J, ZHANG H R, PENG F, YANG H J, XIONG L, WANG C, HUANG C, CHEN X D, MA L L. Effects of Cu/Fe ratio on structure and performance of attapulgite supported CuFeCo-based catalyst for mixed alcohols synthesis from syngas[J]. Appl Catal A:Gen, 2015,503(25):51-61.  

    50. [50]

      LI F, ZHANG L H, EVANS D G, DUAN X. Structure and surface chemistry of manganese-doped copper-based mixed metal oxides derived from layered double hydroxides[J]. Colloids Surf A, 2004,244(1/3):169-177.  

    51. [51]

      DATKA J, TUREK A M, JEHNG J M, WACHS I E. Acidic properties of supported niobium oxide catalysts:An infrared spectroscopy investigation[J]. J Catal, 1992,135(1):186-199.  

    52. [52]

      BARZETTI T, SELLI E, MOSCOTTI D, FORNI L. Pyridine and ammonia as probes for FT-IR analysis of solid acid catalysts[J]. J Chem Soc Faraday Trans, 1996,92(8):1401-1407. doi: 10.1039/ft9969201401

    53. [53]

      SULTANA A, HANEDA M, FUJITANI T, HAMADA H. Influence of Al2O3 support on the activity of Ag/Al2O3 catalysts for SCR of NO with decane[J]. Catal Lett, 2007,114(1/2):96-102.

    54. [54]

      CHMIELARZ L, PIWOWARSKA Z, KUŚTROWSKI P, WEGRZYN A, GIL B, KOWALCZYK A, DUDEK B, DZIEMBAJ R, MICHALIKET M. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process[J]. Appl Clay Sci, 2011,53(2):164-173. doi: 10.1016/j.clay.2010.12.009

    55. [55]

      LONG R Q, YANG R T. Selective catalytic reduction of nitrogen oxides by ammonia over Fe3+-Exchanged TiO2-pillared clay catalysts[J]. J Catal, 1999,186(2):254-268. doi: 10.1006/jcat.1999.2558

    56. [56]

      EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine absorbed on solid acid catalysts[J]. J Catal, 1993,141(2):347-354. doi: 10.1006/jcat.1993.1145

    57. [57]

      LI J H, ZHU Y Q, KE R, HAO J M. Improvement of catalytic activity and sulfur-resistance of Ag/TiO2-Al2O3 for NO reduction with propene under lean burn conditions[J]. Appl Catal B:Environ, 2008,80(3/4):202-213.  

    58. [58]

      DATKA J, GIL B, KUBACKA A. Heterogeneity of OH groups in H-mordenites:Effect of dehydroxylation[J]. Zeolites, 1996,17(5/6):428-433.

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Tong Zhou Xue Liu Liang Zhao Mingtao Qiao Wanying Lei . Efficient Photocatalytic H2O2 Production and Cr(VI) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-. doi: 10.3866/PKU.WHXB202309020

    3. [3]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    4. [4]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    5. [5]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    6. [6]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    7. [7]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    8. [8]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    9. [9]

      Ke-Ai Zhou Lian Huang Xing-Ping Fu Li-Ling Zhang Yu-Ling Wang Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172

    10. [10]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    11. [11]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    12. [12]

      Dong-Xue Jiao Hui-Li Zhang Chao He Si-Yu Chen Ke Wang Xiao-Han Zhang Li Wei Qi Wei . Layered (C5H6ON)2[Sb2O(C2O4)3] with a large birefringence derived from the uniform arrangement of π-conjugated units. Chinese Journal of Structural Chemistry, 2024, 43(6): 100304-100304. doi: 10.1016/j.cjsc.2024.100304

    13. [13]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    14. [14]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    15. [15]

      Peng Li Yuanying Cui Zhongliao Wang Graham Dawson Chunfeng Shao Kai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-. doi: 10.1016/j.actphy.2025.100065

    16. [16]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    17. [17]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    18. [18]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    19. [19]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    20. [20]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

Metrics
  • PDF Downloads(7)
  • Abstract views(645)
  • HTML views(37)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return