Ni-Sm/SiC catalysts prepared by hydrothermal method for carbon dioxide reforming of methane
- Corresponding author: JIN Guo-qiang, gqjin@sxicc.ac.cn
Citation:
WANG Bing, JIN Guo-qiang, WANG Ying-yong, GUO Xiang-yun. Ni-Sm/SiC catalysts prepared by hydrothermal method for carbon dioxide reforming of methane[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(12): 1473-1478.
SHARIFI M, HAGHIGHI M, ABDOLLAHIFAR M. Sono-dispersion of bimetallic Ni-Co over zeolite Y used in conversion of greenhouse gases CH4/CO2 to high valued syngas[J]. J Nat Gas Sci E, 2015,23:547-558. doi: 10.1016/j.jngse.2015.03.006
HUANG X, XUE G X, WANG C Z, ZHAO N, SUN N N, WEI W, SUN Y H. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane:Effect of Ni embedding and Y2O3 promotion[J]. Catal Sci Technol, 2016,6(2):449-459. doi: 10.1039/C5CY01171J
AMIN M H, MANTRI K, NEWNHAM J, TARDIO J, BHARGAVA S K. Highly stable ytterbium promoted Ni/gamma-Al2O3 catalysts for carbon dioxide reforming of methane[J]. Appl Catal B:Environ, 2012,119:217-226.
LIU H T, LI S Q, ZHANG S B, WANG J M, ZHOU G J, CHEN L, WANG X L. Catalytic performance of novel Ni catalysts supported on SiC monolithic foam in carbon dioxide reforming of methane to synthesis gas[J]. Catal Commun, 2008,120(1/2):51-54.
LI J F, XIA C, AU C T, LIU B S. Y2O3-promoted NiO/SBA-15 catalysts highly active for CO2/CH4 reforming[J]. Int J Hydrogen Energy, 2014,39(21):10927-10940. doi: 10.1016/j.ijhydene.2014.05.021
ZANGANEHA R, REZAEI M, ZAMANIYAN A. Dry reforming of methane to synthesis gas on NiO-MgO nanocrystalline solid solution catalysts[J]. Int J Hydrogen Energy, 2013,38(7):3012-3018. doi: 10.1016/j.ijhydene.2012.12.089
GARCÍA-VARGAS J M, VALVERDE J L, DÍEZ J, SÁNCHEZ P, DORADO F. Influence of alkaline and alkaline-earth cocations on the performance of Ni/β-SiC catalysts in the methane tri-reforming reaction[J]. Appl Catal B:Environ, 2014,148:322-329.
GUO X N, ZHI G J, YAN X Y, JING Q, GUO X Y, BRAULT P. Methane combustion over Pd/ZrO2/SiC, Pd/CeO2/SiC, and Pd/Zr0.5Ce0.5O2/SiC catalysts[J]. Catal Commun, 2011,12(10):870-874. doi: 10.1016/j.catcom.2011.02.007
GUO P F, JIN G Q, GUO C X, WANG Y Y, TONG X L, GUO X Y. Effect of Yb2O3 promotor on the performance of Ni/SiC catalysts in CO2 reforming of CH4[J]. J Fuel Chem Technol, 2014,42(6):719-726. doi: 10.1016/S1872-5813(14)60033-5
YU Y, JIN G Q, WANG Y Y, GUO X Y. Synthesis of natural gas from CO methanation over SiC supported Ni-Co bimetallic catalysts[J]. Catal Commun, 2013,31:5-10. doi: 10.1016/j.catcom.2012.11.005
ZHI G J, GUO X N, WANG Y Y, JIN G Q, GUO X Y. Effect of La2O3 modification on the catalytic performance of Ni/SiC for methanation of carbon dioxide[J]. Catal Commun, 2011,16(1):56-59. doi: 10.1016/j.catcom.2011.08.037
WANG B, GUO C X, WANG Y Y, JIN G Q, GUO X Y. Performance of Ni-Smx/SiC for CO2 reforming of CH4[J]. J Fuel Chem Technol, 2016,44(5):587-596.
SINGHA R K, YADAV A, AGRAWAL A, SHUKLA A, ADAK S, SASAKI T, BAL R. Synthesis of highly coke resistant Ni nanoparticles supported MgO/ZnO catalyst for reforming of methane with carbon dioxide[J]. Appl Catal B:Environ, 2016,191:165-178. doi: 10.1016/j.apcatb.2016.03.029
ACHARYYA S S, GHOSH S, BAL R. Fabrication of Three-Dimensional (3D) raspberry-like copper chromite spinel catalyst in a facile hydrothermal route and its activity in selective hydroxylation of benzene to phenol[J]. ACS Appl Mater Inter, 2014,6(16):14451-14459. doi: 10.1021/am503722t
JIN G Q, GUO X Y. Synthesis and characterization of mesoporous silicon carbide[J]. Microporous Mesoporous Mater, 2003,60:207-212. doi: 10.1016/S1387-1811(03)00378-0
AW M S, ZORKO M, DJINOVC P, PINTAR A. Insights into durable NiCo catalysts onβ-SiC/CeZrO2 and γ-Al2O3/CeZrO2 advanced supports prepared from facile methods for CH4-CO2 dry reforming[J]. Appl Catal B:Environ, 2015,164:100-112. doi: 10.1016/j.apcatb.2014.09.012
JAHANGIRI A, PAHLAVANZADEH H, AGHABOZORG H. Synthesis, characterization and catalytic study of Sm doped LaNiO3 nanoparticles in reforming of methane with CO2 and O2[J]. Int J Hydrogen Energy, 2012,37:9977-9984. doi: 10.1016/j.ijhydene.2012.03.128
ZHANG W D, LIU B S, ZHAN Y P, TIAN Y L. Syngas production via CO2 reforming of of methane over Sm2O3-La2O3-supported Ni catalyst[J]. Ind Eng Chem Res, 2009,48:7498-7504. doi: 10.1021/ie9001298
LI J F, XIA C, AU C T, LIU S B. Y2O3-promoted NiO/SBA-15 catalystss highly active for CO2/CH4 reforming[J]. Int J Hydrogen Energy, 2014,39:10927-10940. doi: 10.1016/j.ijhydene.2014.05.021
YANG R Q, XING C, LV C G, SHI L, TSUBAK N. Promotional effect of La2O3 and CeO2 on Ni/gamma-Al2O3 catalysts for CO2 reforming of CH4[J]. Appl Catal A:Gen, 2010,385:92-100. doi: 10.1016/j.apcata.2010.06.050
XIE S, GUO X N, JIN G Q, TONG X L, WANG Y Y, GUO X Y. In situ grafted carbon on sawtooth-like SiC supported Ni for high-performance supercapacitor electrodes[J]. Chem Commun, 2014,50:228-230. doi: 10.1039/C3CC47019A
Haoying ZHAI , Lanzong WEN , Wenjie LIAO , Qin LI , Wenjun ZHOU , Kun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320
Xiangyu Chen , Aihao Xu , Dong Wei , Fang Huang , Junjie Ma , Huibing He , Jing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175
Xiuzheng Deng , Changhai Liu , Xiaotong Yan , Jingshan Fan , Qian Liang , Zhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942
Hui Li , Yanxing Qi , Jia Chen , Juanjuan Wang , Min Yang , Hongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659
Ying Li , Long-Jie Wang , Yong-Kang Zhou , Jun Liang , Bin Xiao , Ji-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033
Shengfei Dong , Ziyu Liu , Xiaoyi Yang . Hydrothermal liquefaction of biomass for jet fuel precursors: A review. Chinese Chemical Letters, 2024, 35(8): 109142-. doi: 10.1016/j.cclet.2023.109142
Ke-Ai Zhou , Lian Huang , Xing-Ping Fu , Li-Ling Zhang , Yu-Ling Wang , Qing-Yan Liu . Fluorinated metal-organic framework for methane purification from a ternary CH4/C2H6/C3H8 mixture. Chinese Journal of Structural Chemistry, 2023, 42(11): 100172-100172. doi: 10.1016/j.cjsc.2023.100172
Junhua Wang , Xin Lian , Xichuan Cao , Qiao Zhao , Baiyan Li , Xian-He Bu . Dual polarization strategy to enhance CH4 uptake in covalent organic frameworks for coal-bed methane purification. Chinese Chemical Letters, 2024, 35(8): 109180-. doi: 10.1016/j.cclet.2023.109180
Yuchen Guo , Xiangyu Zou , Xueling Wei , Weiwei Bao , Junjun Zhang , Jie Han , Feihong Jia . Fe regulating Ni3S2/ZrCoFe-LDH@NF heterojunction catalysts for overall water splitting. Chinese Journal of Structural Chemistry, 2024, 43(2): 100206-100206. doi: 10.1016/j.cjsc.2023.100206
Hao Sun , Xiaoxue Li , Baoyu Wu , Kai Zhu , Yinyi Gao , Tianzeng Bao , Hongbin Wu , Dianxue Cao . Direct regeneration of spent LiFePO4 cathode material via a simple solid-phase method. Chinese Chemical Letters, 2025, 36(6): 110041-. doi: 10.1016/j.cclet.2024.110041
Mianying Huang , Zhiguang Xu , Xiaoming Lin . Mechanistic analysis of Co2VO4/X (X = Ni, C) heterostructures as anode materials of lithium-ion batteries. Chinese Journal of Structural Chemistry, 2024, 43(7): 100309-100309. doi: 10.1016/j.cjsc.2024.100309
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
Muhammad Humayun , Mohamed Bououdina , Abbas Khan , Sajjad Ali , Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193
Maomao Liu , Guizeng Liang , Ningce Zhang , Tao Li , Lipeng Diao , Ping Lu , Xiaoliang Zhao , Daohao Li , Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Erzhuo Cheng , Yunyi Li , Wei Yuan , Wei Gong , Yanjun Cai , Yuan Gu , Yong Jiang , Yu Chen , Jingxi Zhang , Guangquan Mo , Bin Yang . Galvanostatic method assembled ZIFs nanostructure as novel nanozyme for the glucose oxidation and biosensing. Chinese Chemical Letters, 2024, 35(9): 109386-. doi: 10.1016/j.cclet.2023.109386
Keyang Li , Yanan Wang , Yatao Xu , Guohua Shi , Sixian Wei , Xue Zhang , Baomei Zhang , Qiang Jia , Huanhua Xu , Liangmin Yu , Jun Wu , Zhiyu He . Flash nanocomplexation (FNC): A new microvolume mixing method for nanomedicine formulation. Chinese Chemical Letters, 2024, 35(10): 109511-. doi: 10.1016/j.cclet.2024.109511
Wenxuan Yang , Long Shang , Xiaomeng Liu , Sihan Zhang , Haixia Li , Zhenhua Yan , Jun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501
Chen Chen , Jinzhou Zheng , Chaoqin Chu , Qinkun Xiao , Chaozheng He , Xi Fu . An effective method for generating crystal structures based on the variational autoencoder and the diffusion model. Chinese Chemical Letters, 2025, 36(4): 109739-. doi: 10.1016/j.cclet.2024.109739
Lihua HUANG , Jian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315
(a): HN; (b): HA reaction conditions: temperature=800℃,GHSV=10000 mL/(g·h), CH4/CO2(molar ratio)=1.0