Citation: LIU Bin, DONG Heng, SUN Ji-Hong. Effect of the additives PVP and MTS on structural properties and synthesis mechanism of Beta zeolite[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(4): 468-474. shu

Effect of the additives PVP and MTS on structural properties and synthesis mechanism of Beta zeolite

  • Corresponding author: SUN Ji-Hong, jhsun@bjut.edu.cn
  • Received Date: 24 February 2017
    Revised Date: 7 March 2017

    Fund Project: the National Natural Science Foundation of China 21576005the National Natural Science Foundation of China 21276005the Beijing Municipal Natural Science Foundation 2152005

Figures(9)

  • Beta zeolites were successfully synthesized via hydrothermal method using sodium aluminate as aluminium source, silica sol (Ludox) as silicon source and TEAOH as template, respectively. The effects of different additives polyvinyl pyrrolidone (PVP) and Methyltriethoxysilane (MTS) on their structural properties and synthesis mechanism were investigated in detail by various characterizations, such as XRD, TEM, BET, ICP, 29Si-NMR and NH3-TPD method. Also, their catalytic performances were evaluated through catalytic cracking of cumene. The results showed that the beta zeolite obtained in the PVP-added system presented a better crystallinity, higher Si/Al molar ratio (25.68), and larger surface area (772 m2/g). Comparably, the MTS-effected samples revealed a larger surface area (657 m2/g), higher Si/Al molar ratio (25.76), but lower crystallinity and smaller particle sizes (around 160-320 nm). Moreover, both of them exhibited a good catalytic activity for cumene cracking due to the existences of abundant and strong acid content.
  • 加载中
    1. [1]

      WADLINGER R L, KERR G T, ROSINSKI E J. Catalytic composition of a crystalline zeolite:US, 3308069[P]. 1967-03-07.

    2. [2]

      BELLUSSI G, PAZZUCONI G, PEREGO C, GIROTTI G, TERZONI G. Liquid-phase alkylation of benzene with light olefinscatalyzed by β-Zeolites[J]. J Catal, 1995,157(1):227-234. doi: 10.1006/jcat.1995.1283

    3. [3]

      ARRIBAS M A, MARTINEZ A. Simultaneous isomerization of n-heptane and saturation of benzene over Pt/Beta catalysts:The influence of zeolite crystal size on product selectivity and sulfur resistance[J]. Catal Today, 2001,65(2/4):117-122.

    4. [4]

      DING L, ZHENG Y, HONG Y, RING Z. Effect of particle size on the hydrothermal stability of zeolite Beta[J]. Microporous Mesoporous Mater, 2007,101(3):432-439. doi: 10.1016/j.micromeso.2006.12.008

    5. [5]

      SERRANO D P, AGUADO J, ESCOLA J M, RODRIGUEZ J M, PERAL A. Hierarchical zeolites with enhanced textural and catalytic properties synthesized from organofunctionalized seeds[J]. Chem Mater, 2006,18(10):2462-2464. doi: 10.1021/cm060080r

    6. [6]

      AGUADO J, SERRANO D P, RODRIGUEZ J M. Zeolite Beta with hierarchical porosity prepared from arganofuctionalized seed[J]. Microporous Mesoporous Mater, 2008,115(3):504-513. doi: 10.1016/j.micromeso.2008.02.026

    7. [7]

      WANG Run-wei, LIN Sen, MENG Xiang-ju, LI Bin-song, JIANG Da-zhen, XIAO Feng-shou, QIU Shi-lun. Influence of catalysts particle size on alkylation of isobutane with butene over Hβ zeolites[J]. Chem J Chin Univ, 2003,24(2):205-207.  

    8. [8]

      MOLLER K, YILMAZ B, JACUBINAS R M, MULLER U, BEIN T. One-step synthesis of hierarchical zeolite beta via network formation of uniform nanocrystals[J]. J Am Chem Soc, 2011,133(14):5284-5295. doi: 10.1021/ja108698s

    9. [9]

      DING L, ZHENG Y, ZHANG Z, RING Z, CHEN J. Effect of agitation on the synthesis of zeolite beta and its synthesis mechanism in absence of alkali cations[J]. Microporous Mesoporous Mater, 2006,94(1/3):1-8.

    10. [10]

      SHAN Zhi-chao, LIU Si-yu, LI Cai-jin, ZHU Long-feng, MENG Xiang-ju, XIAO Feng-shou. High-temperature synthesis of zeolite Y[J]. Acta Phys Chim Sin, 2011,27(4):959-964.  

    11. [11]

      VUONG G T, DO T O. A new route for the synthesis of uniform nanozeolites with hydrophobic external surface in organic solvent medium[J]. J Am Chem Soc, 2007,129(13):3810-3811. doi: 10.1021/ja069058p

    12. [12]

      VAN BOKHOVEN J A, AM V D E, KONINGSBERGER D C. Three-coordinate aluminum in zeolites observed with in situ X-Ray absorption near-edge spectroscopy at the Al K-edge:Flexibility of aluminum coordinations in zeolites[J]. J Am Chem Soc, 2003,125(24):7435-7442. doi: 10.1021/ja0292905

    13. [13]

      XU Ru-ren, PANG Wen-qin, YU Ji-hong, HUO Qi-sheng, CHEN Jie-sheng. Chemistry-Zeolites and Porous Materials[M]. Beijing:Science Press, 2004:74-76.

    14. [14]

      YARIPOUR F, SHARIATINIA Z, SAHEBDELFAR S, LRANDOUKHT A. Effect of boron incorporation on the structure, products selectivities and lifetime of H-ZSM-5 nanocatalyst designed for application in methanol-to-olefins (MTO) reaction[J]. Microporous Mesoporous Mater, 2015,203:41-53. doi: 10.1016/j.micromeso.2014.10.024

    15. [15]

      ZHU Jin-hong, LIU Jing, ZHAO Wen-jiang, WANG Xiang-sheng, LIU Xiu-mei, BAO Xin-he. Synthesis and characterization of Al-MSU-S mesoporous and meso-microporous molecular sieves and their catalytic performance[J]. Chin J catal, 2004,25(9):741-747.  

    16. [16]

      KUMARAN G M, GARG S, SONI K, KUMAR M, GUPTA J K, SHARMA L D, RAMA RAO K S, MURALI DHAR G. Synthesis and characterization of acidic properties of Al-SBA-15 materials with varing Si/Al ratios[J]. Microporous Mesoporous Mater, 2008,114(1/3):103-109.  

  • 加载中
    1. [1]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    2. [2]

      Ying XuChengying ShenHailong YuanWei Wu . Mapping multiple phases in curcumin binary solid dispersions by fluorescence contrasting. Chinese Chemical Letters, 2024, 35(9): 109324-. doi: 10.1016/j.cclet.2023.109324

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Zhengzheng LIUPengyun ZHANGChengri WANGShengli HUANGGuoyu YANG . Synthesis, structure, and electrochemical properties of a sandwich-type {Co6}-cluster-added germanotungstate. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1173-1179. doi: 10.11862/CJIC.20240039

    7. [7]

      Juan CHENGuoyu YANG . A porous-layered aluminoborate built by mixed oxoboron clusters and AlO4 tetrahedra. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 193-200. doi: 10.11862/CJIC.20240341

    8. [8]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    9. [9]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    10. [10]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    13. [13]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    14. [14]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    17. [17]

      Xueting Cao Shuangshuang Cha Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041

    18. [18]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    19. [19]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    20. [20]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

Metrics
  • PDF Downloads(0)
  • Abstract views(2118)
  • HTML views(800)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return