Citation: KUANG Zhi-qi, LI Feng, LUO Jing, WANG Yan-xia, YUAN Dan-ping, WANG Qin, ZHAO Hai-hong, WANG Shi-wei, ZHAO Ning, XIAO Fu-kui. LaCuZnX (X=Al, Zr, Al+Zr) perovskite-like catalysts treated by NaBH4 and their catalytic performance for CO2 hydrogenation to methanol[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(3): 293-301. shu

LaCuZnX (X=Al, Zr, Al+Zr) perovskite-like catalysts treated by NaBH4 and their catalytic performance for CO2 hydrogenation to methanol

  • Corresponding author: LI Feng, lifeng2729@sxicc.ac.cn XIAO Fu-kui, xiaofk@sxicc.ac.cn
  • Received Date: 6 December 2019
    Revised Date: 9 January 2020

    Fund Project: Natural Science Foundation of Shanxi Province 201801D121070the National Natural Science Foundation of China 21776294The project was supported by the National Youth Science Foundation of China(21802158), the National Natural Science Foundation of China (21776294), Natural Science Foundation of Shanxi Province (201801D121070) and Youth Science Foundation of Shanxi Province(201701D221052)The project was supported by the National Youth Science Foundation of China 21802158Youth Science Foundation of Shanxi Province 201701D221052

Figures(8)

  • La:Cu:Zn:X (X=Zr, Al, Al+Zr) perovskite-like catalysts were prepared by coprecipitation method followed by liquid phase reduction by NaBH4. The physicochemical properties of the catalysts were tested by a series of characterization methods, and the catalysts were tested for methanol synthesis from CO2 hydrogenation in a fixed-bed reactor. The results showed that the as-prepared catalysts were mainly composed of La2CuO4 perovskite-like crystal structure and doping of elements led to the spatial distortion of the perovskite-like structure. After reduction by NaBH4, metal copper species and some high-valence copper species were found, which could be further reduced during the reaction. The CO2 conversion was positively correlated with the Cu surface area, the dispersion of Cu, and the (Cuα++Cu0)/Cutotal of the catalyst. The higher methanol selectivity was obtained when Cuα+ binding energy was farther away from Cu+ binding energy. LCZA had the highest CO2 conversion, LCZ catalyst possessed the highest methanol selectivity, and LCZZA catalyst presented the optimal methanol space time yield.
  • 加载中
    1. [1]

      CHOUDHURY J. New strategies for CO2-to-methanol conversion[J]. ChemCatChem, 2012,4(5):609-611. doi: 10.1002/cctc.201100495

    2. [2]

      OLAH G A. Beyond oil and gas:The methanol economy[J]. Angew Chem Int Ed, 2005,44(18):2636-2639. doi: 10.1002/anie.200462121

    3. [3]

      DU X L, JIANG Z, SU D S, WANG J Q. Research progress on the indirect hydrogenation of carbon dioxide to methanol[J]. ChemSusChem, 2016,9(4):322-332. doi: 10.1002/cssc.201501013

    4. [4]

      SLOCZYNSKI J, GRABOWSKI R, KOZLOWSKA A, OLSZEWSKI P, STOCH J, SKRZYPEK J, LACHOWSKA M. Catalytic activity of the M/(3ZnO center dot ZrO2) system (M=Cu, Ag, Au) in the hydrogenation of CO2 to methanol[J]. Appl Catal A:Gen, 2004,278(1):11-23. doi: 10.1016/j.apcata.2004.09.014

    5. [5]

      KATTEL S, YAN B, YANG Y, CHEN J G, LIU P. Optimizing binding energies of key intermediates for CO2 hydrogenation to methanol over oxide-supported copper[J]. J Am Chem Soc, 2016,138(38):12440-12450. doi: 10.1021/jacs.6b05791

    6. [6]

      GUO X, MAO D, LU G, WANG S, WU G. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation[J]. J Mol Catal A:Chem, 2011,345(1/2):60-68.  

    7. [7]

      ZHANG Y L, SUN Q, DENG J F, WU D, CHEN S Y. A high activity Cu/ZnO/Al2O3 catalyst for methanol synthesis:Preparation and catalytic properties[J]. Appl Catal A:Gen, 1997,158(1/2):105-120. doi: 10.1016/S0926-860X(96)00362-6

    8. [8]

      DENG J F, SUN Q, ZHANG Y L, CHEN S Y, WU D. A novel process for preparation of a Cu/ZnO/Al2O3 ultrafine catalyst for methanol synthesis from CO2+H2:Comparison of various preparation methods[J]. Appl Catal A:Gen, 1996,139(1/2):75-85.  

    9. [9]

      SUN Q, ZHANG Y L, CHEN H Y, DENG J F, WU D, CHEN S Y. Novel process for the preparation of Cu/ZnO and Cu/ZnO/Al2O3 ultrafine catalyst:Structure, surface properties, and activity for methanol synthesis from CO2+H2[J]. J Catal, 1997,167(1):92-105. doi: 10.1006/jcat.1997.1554

    10. [10]

      WANG D, TAO F, ZHAO H, SONG H, CHOU L. Preparation of Cu/ZnO/Al2O3 catalyst for CO2 hydrogenation to methanol by CO2 assisted aging[J]. Chin J Catal, 2011,32(9):1452-1456.  

    11. [11]

      CHEN C S, WU J H, LAI T W. Carbon dioxide hydrogenation on Cu nanoparticles[J]. J Phys Chem C, 2010,114(35):15021-15028. doi: 10.1021/jp104890c

    12. [12]

      FISHER I A, BELL A T. In situ infrared study of methanol synthesis from H2/CO over Cu/SiO2 and Cu/ZrO2/SiO2[J]. J Catal, 1998,178(1):153-173. doi: 10.1006/jcat.1998.2134

    13. [13]

      WANG Z Q, XU Z N, ZHANG M J, CHEN Q S, CHEN Y, GUO G C. Insight into composition evolution in the synthesis of high-performance Cu/SiO2 catalysts for CO2 hydrogenation[J]. Rsc Adv, 2016,6(30):25185-25190. doi: 10.1039/C6RA02929A

    14. [14]

      GRABOWSKA E. Selected perovskite oxides:Characterization, preparation and photocatalytic properties-A review[J]. Appl Catal B:Environ, 2016,186:97-126. doi: 10.1016/j.apcatb.2015.12.035

    15. [15]

      ZHAN H, LI F, GAO P, ZHAO N, XIAO F, WEI W, SUN Y. Influence of element doping on La-Mn-Cu-O based perovskite precursors for methanol synthesis from CO2/H2[J]. Rsc Adv, 2014,4(90):48888-48896. doi: 10.1039/C4RA07692C

    16. [16]

      ZHAN H, LI F, XIN C, ZHAO N, XIAO F, WEI W, SUN Y. Performance of the La-Mn-Zn-Cu-O based perovskite precursors for methanol synthesis from CO2 hydrogenation[J]. Catal Lett, 2015,145(5):1177-1185. doi: 10.1007/s10562-015-1513-8

    17. [17]

      BELIN S, BRACEY C L, BRIOIS V, ELLIS P R, HUTCHINGS G J, HYDE T I, SANKAR G. CuAu/SiO2 catalysts for the selective oxidation of propene to acrolein:The impact of catalyst preparation variables on material structure and catalytic performance[J]. Catal Sci Technol, 2013,3(11):2944-2957. doi: 10.1039/c3cy00254c

    18. [18]

      CHEN L C, LIN S D. The ethanol steam reforming over Cu-Ni/SiO2 catalysts:Effect of Cu/Ni ratio[J]. Appl Catal B:Environ, 2011,106(3/4):639-649.  

    19. [19]

      LIAW B J, CHEN Y Z. Catalysis of ultrafine CuB catalyst for hydrogenation of olefinic and carbonyl groups[J]. Appl Catal A:Gen, 2000,196(2):199-207. doi: 10.1016/S0926-860X(99)00464-0

    20. [20]

      YUAN Z, WANG L, WANG J, XIA S, CHEN P, HOU Z, ZHENG X. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts[J]. Appl Catal B:Environ, 2011,101(3/4):431-440.  

    21. [21]

      YANG R, YU X, ZHANG Y, LI W, TSUBAKI N. A new method of low-temperature methanol synthesis on Cu/ZnO/Al2O3 catalysts from CO/CO2/H2[J]. Fuel, 2008,87(4/5):443-450.  

    22. [22]

      POKROVSKI K A, RHODES M D, BELL A T. Effects of cerium incorporation into zirconia on the activity of Cu/ZrO2 for methanol synthesis via CO hydrogenation[J]. J Catal, 2005,235(2):368-377. doi: 10.1016/j.jcat.2005.09.002

    23. [23]

      MESHKINI F, TAGHIZADEH M, BAHMANI M. Investigating the effect of metal oxide additives on the properties of Cu/ZnO/Al2O3 catalysts in methanol synthesis from syngas using factorial experimental design[J]. Fuel, 2010,89(1):170-175.  

    24. [24]

      MALUF S S, NASCENTE P A P, AFONSO C R M, ASSAF E M. Study of La2-xCaxCuO4 perovskites for the low temperature water gas shift reaction[J]. Appl Catal A:Gen, 2012,413:85-93. doi: 10.1016/j.apcata.2011.10.047

    25. [25]

      KARELOVIC A, BARGIBANT A, FERNANDEZ C, RUIZ P. Effect of the structural and morphological properties of Cu/ZnO catalysts prepared by citrate method on their activity toward methanol synthesis from CO2 and H2 under mild reaction conditions[J]. Catal Today, 2012,197(1):109-118. doi: 10.1016/j.cattod.2012.07.029

    26. [26]

      GAO P, LI F, XIAO F, ZHAO N, SUN N, WEI W, ZHONG L, SUN Y. Preparation and activity of Cu/Zn/Al/Zr catalysts via hydrotalcite-containing precursors for methanol synthesis from CO2 hydrogenation[J]. Catal Sci Technol, 2012,2(7):1447-1454. doi: 10.1039/c2cy00481j

    27. [27]

      ZHAN H, LI F, GAO P, ZHAO N, XIAO F, WEI W, ZHONG L, SUN Y. Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M=Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors[J]. J Power Sources, 2014,251:113-121. doi: 10.1016/j.jpowsour.2013.11.037

    28. [28]

      ARENA F, ITALIANO G, BARBERA K, BORDIGA S, BONURA G, SPADARO L, FRUSTERI F. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH[J]. Appl Catal A:Gen, 2008,350(1):16-23. doi: 10.1016/j.apcata.2008.07.028

    29. [29]

      ARENA F, ITALIANO G, BARBERA K, BONURA G, SPADARO L, FRUSTERI F. Basic evidences for methanol-synthesis catalyst design[J]. Catal Today, 2009,143(1/2):80-85.  

    30. [30]

      ZHU Y F, TAN R Q, YI T, GAO S, YAN C H, CAO L L. Preparation of nanosized La2CuO4 perovskite oxide using an amorphous heteronuclear complex as a precursor at low-temperature[J]. J Alloys Compd, 2000,311(1):16-21. doi: 10.1016/S0925-8388(00)00851-3

    31. [31]

      KUMAR, VELCHURI, PRASAD, SREEDHAR, RAVIKUMAR, VITHAL, M. Preparation, characterization, photoactivity and XPS studies of Ln(2)ZrTiO(7) (Ln=Sm and Nd)[J]. Ceram Int, 2010,36(4):1347-1355. doi: 10.1016/j.ceramint.2010.01.019

    32. [32]

      The U S. Secretary of Commerce on behalf of the United States of America. NIST X-ray Photoelectron Spectroscopy Database[DB/OL].https: //srdata.nist.gov/xps/Default.aspx, 2000-06-06/2019-12-01.

    33. [33]

      GAO P, LI F, ZHAN H, ZHAO N, XIAO F, WEI W, ZHONG L, WANG H, SUN Y. Influence of Zr on the performance of Cu/Zn/Al/Zr catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. J Catal, 2013,298:51-60. doi: 10.1016/j.jcat.2012.10.030

    34. [34]

      WU G, WANG X, WEI W, SUN Y. Fluorine-modified Mg-Al mixed oxides:A solid base with variable basic sites and tunable basicity[J]. Appl Catal A:Gen, 2010,377(1/2):107-113. doi: 10.1016/j.apcata.2010.01.023

    35. [35]

      LIU Y, SUN K, MA H, XU X, WANG X. Cr, Zr-incorporated hydrotalcites and their application in the synthesis of isophorone[J]. Catal Commun, 2010,11(10):880-883. doi: 10.1016/j.catcom.2010.03.014

    36. [36]

      ARENA F, MEZZATESTA G, ZAFARANA G, TRUNFIO G, FRUSTERI F, SPADARO L. Effects of oxide carriers on surface functionality and process performance of the Cu-ZnO system in the synthesis of methanol via CO2 hydrogenation[J]. J Catal, 2013,300:141-151. doi: 10.1016/j.jcat.2012.12.019

    37. [37]

      WAUGH K C. The absorption and locking-in of hydrogen in copper[J]. Solid State Ionics, 2004,168(3/4):327-342. doi: 10.1016/j.ssi.2003.05.001

    38. [38]

      DONG X, LI F, ZHAO N, XIAO F, WANG J, TAN Y. CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared by precipitation-reduction method[J]. Appl Catal B:Environ, 2016,191:8-17. doi: 10.1016/j.apcatb.2016.03.014

    39. [39]

      GAO P, LI F, ZHAO N, XIAO F, WEI W, ZHONG L, SUN Y. Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol[J]. Appl Catal A:Gen, 2013,468:442-452. doi: 10.1016/j.apcata.2013.09.026

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    4. [4]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    5. [5]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    6. [6]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    7. [7]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    8. [8]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    9. [9]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    10. [10]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    11. [11]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    12. [12]

      Xianghai SongXiaoying LiuZhixiang RenXiang LiuMei WangYuanfeng WuWeiqiang ZhouZhi ZhuPengwei Huo . Insights into the greatly improved catalytic performance of N-doped BiOBr for CO2 photoreduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-0. doi: 10.1016/j.actphy.2025.100055

    13. [13]

      Yuejiao An Wenxuan Liu Yanfeng Zhang Jianjun Zhang Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-. doi: 10.3866/PKU.WHXB202407021

    14. [14]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    15. [15]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    16. [16]

      Yao Ma Xin Zhao Hongxu Chen Wei Wei Liang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 100030-. doi: 10.3866/PKU.WHXB202309045

    17. [17]

      Jian Li Yu Zhang Rongrong Yan Kaiyuan Sun Xiaoqing Liu Zishang Liang Yinan Jiao Hui Bu Xin Chen Jinjin Zhao Jianlin Shi . 高效靶向示踪钙钛矿纳米系统光电增效抗肿瘤. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-. doi: 10.1016/j.actphy.2024.100042

    18. [18]

      Runhua Chen Qiong Wu Jingchen Luo Xiaolong Zu Shan Zhu Yongfu Sun . 缺陷态二维超薄材料用于光/电催化CO2还原的基础与展望. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-. doi: 10.3866/PKU.WHXB202308052

    19. [19]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    20. [20]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

Metrics
  • PDF Downloads(10)
  • Abstract views(1036)
  • HTML views(244)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return