Citation: LIU Xuan, SU Yin-jiao, ZHAO Yuan-cai, TENG Yang, ZHANG Kai, ZHANG Yong-hong. Distribution and enrichment characteristics of arsenic in feed-coal and by-products of coal-fired power plants[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(12): 1513-1519. shu

Distribution and enrichment characteristics of arsenic in feed-coal and by-products of coal-fired power plants

  • Corresponding author: ZHANG Kai, kzhang@ncepu.edu.cn
  • Received Date: 7 September 2020
    Revised Date: 13 October 2020

    Fund Project: the Fundamental Research Funds for the Central Universities 2019QN020The project was supported by the National Natural Science Foundation of China (U1910215) and the Fundamental Research Funds for the Central Universities (2020MS008, 2019QN019, 2019QN020)the Fundamental Research Funds for the Central Universities 2019QN019the Fundamental Research Funds for the Central Universities 2020MS008the National Natural Science Foundation of China U1910215

Figures(5)

  • The distribution and enrichment characteristics of arsenic in five circulating fluidized bed (CFB) units with capacity between 25 to 350 MW and five pulverized coal furnace (PC) units with capacity between 300 to 600 MW were investigated using microwave digestion and hydride generation-atomic fluorescence spectrometry. By comparing the conventional wet digestion method and three kinds of mixed-acid microwave digestion systems, the appropriate digestion method was determined to be HNO3-HCl-HF acid solution mixed in a volume ratio of 6:2:2 with microwave digestion. The majority of the arsenic in coal evaporates during combustion and captured by the fly ash, the arsenic content in the bottom slag is only 1.95-9.75 μg/g. Most arsenic in the flue gas is adsorbed by the fly ash, most of the adsorbed arsenic is successively captured by the dust collector and desulfurization system. The arsenic contents in the fly ash and gypsum is 8.68-17.63 μg/g and 1.71-4.0 μg/g, respectively. Combustion temperature is the key factor affecting the release of arsenic. PC has a higher furnace temperature than CFB and makes more arsenic volatilize from coal and less arsenic remain in bottom slag. Meanwhile, a higher combustion temperature in PC unit produces more glassiness as aluminosilicate in the fly ash, which can capture the arsenic from the flue gas. Therefore, the arsenic content in the fly ash from PC unit is 12.08-17.63 μg/g, which is significantly higher than that from CFB, 8.68-13.84 μg/g. Moreover, the furnace temperature increases with the boiler load, which makes the ratio of arsenic content in the fly ash to the feed coal show an increasing trend. The ash content of the coal used for CFB and PC units is 33.96%-59.63% and 15.05%-41.67%, which makes the relative enrichment factor of arsenic in CFB higher than that in PC. Furthermore, more fine particles escaped from the dust collector should be captured by the desulfurization system, resulting that the arsenic concentration in the desulfurization gypsum of CFB unit is higher than that in PC unit.
  • 加载中
    1. [1]

      FINKELMAN R B. Trace elements in coal: Environmental and health significance[J]. Biol Trace Elem Res, 1999,67:2-9.

    2. [2]

      NRIAGU J O, PACYNA J M. Quantitative assessment of worldwide contamination of air, water and soils by trace metals[J]. Nature, 1988,333(6169):134-139.

    3. [3]

      LIEVE H. Sampling technologies and air pollution control devices for gaseous and particulate arsenic: A review[J]. Environ Pollut, 2005,137(2):305-315.

    4. [4]

      WEI Shao-qing, TENG Yang, LI Xiao-hang, SU Yin-jiao, YANG Wei, ZHANG Kai. Comparison of mercury emission from around 300 MW coal-fired power generation units between pulverized boiler and circulating fluidized-bed boiler[J]. J Fuel Chem Technol, 2017,45(8):1009-1016.

    5. [5]

      SENIOR C L, BOOL L E, MORENCY J R. Laboratory study of trace element vaporization from combustion of pulverized coal[J]. Fuel Process Technol, 2000,63:109-124.

    6. [6]

      ZHAO Y C, ZHANG J Y, HUANG W C, WANG Z H, LI Y, SONG D Y, ZHAO F H, ZHENG C G. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China[J]. Energy Convers Manage, 2008,49:615-624.

    7. [7]

      ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxide s during coal combustion[J]. J Fuel Chem Technol, 2019,47(2):139-144.

    8. [8]

      AKIRA O, TSUNENORI N, YUKA S, AKIRA I, HIROKAZU T. Analysis of arsenic and some other elements in coal fly ash by X-ray photoelectron spectroscopy[J]. J Hazard Mater, 2005,119(1/3):213-217.

    9. [9]

      LOPEZ-ANTON M A, DIAZ-SOMOANO M, SPEARS D A, MARTINEZ-TARAZONA M R. Arsenic and selenium capture by fly ashes at low temperature[J]. Environ Sci Technol, 2006,40:3947-3951.

    10. [10]

      ZHENG C H, WANG L, ZHANG Y X, ZHANG J, ZHAO H T, ZHOU J S, GAO X, CEN K F. Partitioning of hazardous trace elements among air pollution control devices in ultra-low-emission coal-fired power plants[J]. Energy Fuels, 2017,31(6):6334-6344.

    11. [11]

      ZHAO Y, ZHONG W Q, SUN H. Removal of arsenic from flue gas using NaClO/NaClO2 complex absorbent[J]. Chem Eng Res Des, 2019,144:505-511.

    12. [12]

      TIAN H Z, WANG Y, XUE Z G, QU Y P, CHAI F H, HAO J M. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007[J]. Sci Total Environ, 2011,409(16):3078-3081.

    13. [13]

      DUAN L B, CUI J, JIANG Y, ZHAO C S, EDWARD J A. Partitioning behavior of Arsenic in circulating fluidized bed boilers co-firing petroleum coke and coal[J]. Fuel Process Technol, 2017,166:107-114.

    14. [14]

      GENG W H, FURUZONO T, NAKAJIMA T, TAKANASHI H, OHKI A. Determination of total arsenic in coal and wood using oxygen flask combustion method followed by hydride generation atomic absorption spectrometry[J]. J Hazard Mater, 2010,176:356-360.

    15. [15]

      ZHANG N, SUN G L, MA H R. Determination of ultra-trace selenium in mineral samples by hydride generation atomic fluorescence spectrometry with pressurized-PTFE-vessel acid digestion[J]. Miner Eng, 2007,20(15):1397-1400.

    16. [16]

      WANG J, NAKAZATO T, SAKANISHI K, YAMADA O, TAO H, SAITO I. Microwave digestion with HNO3/H2O2 mixture at high temperatures for determination of trace elements in coal by ICP-OES and ICP-MS[J]. Anal Chim Acta, 2004,514(1):115-124.

    17. [17]

      AKIRA I, TSUNENORI N, HIROKAZU T, AKIRA O, YOSHIO F, TORU Y. Effect of pretreatment conditions on the determination of major and trace elements in coal fly ash using ICP-AES[J]. Fuel, 2006,85(2):257-263.

    18. [18]

      HATANPAA E, KAJANDER K, LAITINEN T, PIEPPONEN S, REVITZER H. A study of trace element behavior in two modern coal-fired power plants I. Development and optimization of trace element analysis using reference materials[J]. Fuel Process Technol, 1997,51(3):205-217.

    19. [19]

      ZHU Zhen-wu, ZHUO Yu-qun. Effect of acid systems for determination of trace elements in coal combustion byproducts using microwave digestion method[J]. J Tsinghua Univ (Sci & Technol), 2016,56(10):1072-1078.

    20. [20]

      GÓMEZ-ARIZA J L, SÁNCHEZ-RODAS D, GIRÁLDEZ I, MORALES E. A comparison between ICP-MS and AFS detection for arsenic speciation in environmental samples[J]. Talanta, 2000,51(2):257-268.

    21. [21]

      LIU Jing, ZHNEG Chu-guang, JIA Xiao-hong, XU Jie-ying. Determination of 14 elements in coal ash by microwave digestion and inductively coupled plasma atomic emission spectrometry[J]. Anal Chem, 2003,31(11):1360-1363.

    22. [22]

      WANG Xue-tao, JIN Bao-sheng, ZHONG Zhao-ping, QU Cheng-rui. Influence of atmospheres on behavior of heavy metals during melting process of fly ashes from municipal solid waste incinerator[J]. Proc CSEE, 2006,26(7):47-52.

    23. [23]

      ZHAO Feng-hua, REN De-yi, PENG Su-ping, WANG Yun-quan, ZHANG Jun-ying, DING Zhen-hua, CONG Zhi-yuan. The modes of occurrence of arsenic in coal[J]. Adv Earth Sci, 2003,18(2):214-220.

    24. [24]

      LIU Hui-min, WANG Chun-bo, ZHANG Yue, SUN Zhe, SHAO Huan. Effect of temperature and occurrence form of arsenic on its migration and volatilization during coal combustion[J]. J Chem Ind Eng, 2015,66(11):4643-4651.

    25. [25]

      CHEN C, LI Q, TAO D J, ZHAI J P, TAO C L. Physical and chemical prosperities difference between pulverized coal boiler fly ash and circulating fluidized bed combustion ash[J]. Asian J Chem, 2012,24(10):4538-4540.

    26. [26]

      LI Yang, CHEN Wei, ZHAO Yong-chun, LI Hai-long, ZHANG Jun-ying, LI Jie, HU Hao-quan. Removal of elemental mercury from flue gas by Fe/Al-SiO2 complex[J]. J Fuel Chem Technol, 2019,47(12):1409-1416.

    27. [27]

      ZHU Yong-qing. Silicate Melt Structure[M]. Beijing: Geological Publishing House, 1990.

    28. [28]

      ZHAO Feng-hua, REN De-yi, XU De-wei, YIN Jin-shuang, LI Ya-nan, WANG Xiu-qin. Research on the phase of arsenic in coal-burning residue[J]. J China Univ Min Technol, 1999,28(4):366-367.

    29. [29]

      MEIJ R, VERDENBREGT L H J, WINKEL H T. The fate and behavior of mercury in coal-fired power plants[J]. J Air Waste Manage, 2002,52(8):912-917.

    30. [30]

      BHATTACHARYYA S, DONAHOE J, DAN P. Experimental study of chemical treatment of coal fly ash to reduce the mobility of priority trace elements[J]. Fuel, 2009,88(7):1173-1184.

    31. [31]

      RODELLA N, BOSIOA , ZACCO A, BORGESE L, PASQUALI M, DALIPI R, DEPERO L E, PATEL V, BINGHAM P A, BONTEMPI E. Arsenic stabilization in coal fly ash through the employment of waste materials[J]. J Environ Chem Eng, 2014,2(3):1352-1357.

    32. [32]

      YUDOVICH Y E, KETRIS M P. Arsenic in coal: A review[J]. Int J Coal Geol, 2005,61:141-196.

  • 加载中
    1. [1]

      Shanying Chen Kangning Huo Ke Qi Jingyi Li Shuxin Li Yunchao Li . A Novel Colloid Electrophoresis Experiment with the Characteristics of Resource Recycling and Inquiry-Driven Experimental Design. University Chemistry, 2024, 39(5): 274-286. doi: 10.3866/PKU.DXHX202311067

    2. [2]

      Yuena Yu Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076

    3. [3]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    4. [4]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    5. [5]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    6. [6]

      Yan ZHAOXiaokang JIANGZhonghui LIJiaxu WANGHengwei ZHOUHai GUO . Preparation and fluorescence properties of Eu3+-doped CaLaGaO4 red-emitting phosphors. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1861-1868. doi: 10.11862/CJIC.20240242

    7. [7]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    8. [8]

      Han ZHANGJianfeng SUNJinsheng LIANG . Hydrothermal synthesis and luminescent properties of broadband near-infrared Na3CrF6 phosphor. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 349-356. doi: 10.11862/CJIC.20240098

    9. [9]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    10. [10]

      Yan ZHAOJiaxu WANGZhonghu LIChangli LIUXingsheng ZHAOHengwei ZHOUXiaokang JIANG . Gd3+-doped Sc2W3O12: Eu3+ red phosphor: Preparation and luminescence performance. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 461-468. doi: 10.11862/CJIC.20240316

    11. [11]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    12. [12]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    13. [13]

      Lijuan Wang Yuping Ning Jian Li Sha Luo Xiongfei Luo Ruiwen Wang . Enhancing the Advanced Nature of Natural Product Chemistry Laboratory Courses with New Research Findings: A Case Study of the Application of Berberine Hydrochloride in Photodynamic Antimicrobial Films. University Chemistry, 2024, 39(11): 241-250. doi: 10.12461/PKU.DXHX202403017

    14. [14]

      . Cover and Table of Contents for Vol.40 No. 12. Acta Physico-Chimica Sinica, 2024, 40(12): -.

    15. [15]

      . . University Chemistry, 2024, 39(2): 0-0.

    16. [16]

      . . University Chemistry, 2024, 39(3): 0-0.

    17. [17]

      . . University Chemistry, 2024, 39(4): 0-0.

    18. [18]

      . . University Chemistry, 2024, 39(5): 0-0.

    19. [19]

      . . University Chemistry, 2024, 39(6): 0-0.

    20. [20]

      . . University Chemistry, 2024, 39(7): 0-0.

Metrics
  • PDF Downloads(2)
  • Abstract views(828)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return