Citation: CHEN Ling-peng, TIAN Zhi-peng, LÜ Wei, SI Zhan, LIU Qi-ying, DING Ming-yue, CHEN Lun-gang, MA Long-long, ZHANG Qi, WANG Tie-jun, WANG Chen-guang. Preparation of Pt-SnE/Mg (Al) O catalyst by anion exchange method and its performance in alkane dehydrogenation[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 597-606. shu

Preparation of Pt-SnE/Mg (Al) O catalyst by anion exchange method and its performance in alkane dehydrogenation

  • Corresponding author: WANG Chen-guang, wangcg@ms.giec.ac.cn
  • Received Date: 16 December 2015
    Revised Date: 1 March 2016

    Fund Project: the National Natural Science Foundation of China 51476175the Hundred Talents Program of the Chinese Academy of Sciences y507y51001

Figures(11)

  • Pt-SnE/Mg (Al) O catalyst was prepared by anion exchange method with hydrotalcite as the support. The Pt-SnE/Mg (Al) O catalyst was characterized by XRD, nitrogen sorption, CO-TPD and TEM; its catalytic performance in the dehydrogenation of ethane and propane was compared with that the Pt-SnI/Mg (Al) O catalyst obtained by impregnation method. The results indicate that under the same reaction conditions, the conversions of ethane over the Pt-SnE/Mg (Al) O and Pt-SnI/Mg (Al) O catalysts are 12.2% and 3.1%, respectively, whist the conversions of propane over these two catalysts are 38.7% and 26.4%, respectively. Such results illustrate that the Pt-SnE/Mg (Al) O catalyst prepared by the anion exchange method is obviously superior to the Pt-SnI/Mg (Al) O catalyst prepared by the impregnation method in terms of catalytic activity and stability for alkane dehydrogenation.
  • 加载中
    1. [1]

      MCKENDRY P. Energy production from biomass (part 1): Overview of biomass[J]. Bioresour Technol, 2002,83(1):37-46. doi: 10.1016/S0960-8524(01)00118-3

    2. [2]

      BRIDGWATER A V. The technical and economic feasibility of biomass gasification for power generation[J]. Fuel, 1995,74(5):631-653. doi: 10.1016/0016-2361(95)00001-L

    3. [3]

      LV P M, XIONG Z H, CHANG J, WU C Z, CHEN Y, ZHU J X. An experimental study on biomass air-steam gasification in a fluidized bed[J]. Bioresour Technol, 2004,95(1):95-101. doi: 10.1016/j.biortech.2004.02.003

    4. [4]

      NARBESHUBER T F, BRAIT A, SESHAN K, LERCHER J A. Dehydrogenation of light alkanes over zeolites[J]. J Catal, 1997,172(1):127-136. doi: 10.1006/jcat.1997.1860

    5. [5]

      WU Chuang-zhi, LIU Hua-cai, YIN Xiu-li. Status and prospects for biomass gasification[J]. J Fuel Chem Technol, 2013,41(7):798-804.  

    6. [6]

      ZHU H, ROSENFELD D C, ANJUM D H, SANGARUA S S, SAIHA Y, CHIKHA S O, BASSET J M. Ni-Ta-O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene[J]. J Catal, 2015,329:291-306. doi: 10.1016/j.jcat.2015.05.023

    7. [7]

      KONG L, LI J, ZHAO Z, ZHAO Z, LIU Q L, SUN Q Y, LIU J, WEI Y C. Oxidative dehydrogenation of ethane to ethylene over Mo-incorporated mesoporous SBA-16 catalysts: The effect of MoOx dispersion[J]. Appl Catal A: Gen, 2016,510:84-97. doi: 10.1016/j.apcata.2015.11.016

    8. [8]

      QIAO A L, KALEVARU V N, RADNIK J, MARTIN A. Oxidative dehydrogenation of ethane to ethylene over Ni-Nb-M-O catalysts: Effect of promoter metal and CO2-admixture on the performance[J]. Catal Today, 2016,264:144-151. doi: 10.1016/j.cattod.2015.08.043

    9. [9]

      HAKULI A, HARLIN M E, BACKMAN L B, KRAUSE A O I. Dehydrogenation of i-Butane on CrOx/SiO2 catalysts[J]. J Catal, 1999,184(2):349-356. doi: 10.1006/jcat.1999.2468

    10. [10]

      GASCÓN J, TÉLLEZ C, HERGUIDO J, MENÉNDEZ M. Propane dehydrogenation over a Cr2O3/Al2O3 catalyst: Transient kinetic modeling of propene and coke formation[J]. Appl Catal A: Gen, 2003,248(1):105-116.  

    11. [11]

      HAKULI A, KYTÖKIVI A, KRAUSE A O I. Dehydrogenation of i-butane on CrOx/Al2O3 catalysts prepared by ALE and impregnation techniques[J]. Appl Catal A: Gen, 2000,190(1):219-232.  

    12. [12]

      SIDDIQI G, SUN P, GALVITA V, BELL A T. Catalyst performance of novel Pt/Mg (Ga)(Al) O catalysts for alkane dehydrogenation[J]. J Catal, 2010,274(2):200-206. doi: 10.1016/j.jcat.2010.06.016

    13. [13]

      LARSSON M, HULTÉN M, BLEKKAN E A, ANDERSSON B. The effect of reaction conditions and time on stream on the coke formed during propane dehydrogenation[J]. J Catal, 1996,164(1):44-53. doi: 10.1006/jcat.1996.0361

    14. [14]

      LI Q, SUI Z, ZHOU X, ZHU Y, ZHOU J H, CHEN D. Coke formation on Pt-Sn/Al2O3 catalyst in propane dehydrogenation: Coke characterization and kinetic study[J]. Top Catal, 2011,54(13/15):888-896.  

    15. [15]

      BOCANEGRA S A, CASTRO A A, GUERRERO-RUÍZ A, SCELZAA O A, MIGUEL S R. Characteristics of the metallic phase of Pt/Al2O3 and Na-doped Pt/Al2O3 catalysts for light paraffins dehydrogenation[J]. Chem Eng J, 2006,118(3):161-166. doi: 10.1016/j.cej.2006.02.004

    16. [16]

      SIRI G J, BERTOLINI G R, CASELLA M L, FERRETTI O A. PtSn/γ-Al2O3 isobutane dehydrogenation catalysts: The effect of alkaline metals addition[J]. Mater Lett, 2005,59(18):2319-2324. doi: 10.1016/j.matlet.2005.03.013

    17. [17]

      NAGARAJA B M, SHIN C H, JUNG K D. Selective and stable bimetallic PtSn/θ-Al2O3 catalyst for dehydrogenation of n-butane to n-butenes[J]. Appl Catal A: Gen, 2013,467:211-223. doi: 10.1016/j.apcata.2013.07.022

    18. [18]

      GONG Jing-jing, LI Shu-chao, ZHOU Hua-lan, XU Lian-bo, FAN Yi-ning. Promotional effect of Na+ in the supported PtSnNa/SUZ-4 cayalysts for propane dehydrogenation[J]. J Fuel Chem Technol, 2015,43(7):857-861.  

    19. [19]

      AKPORIAYE D, JENSEN S F, OLSBYE U, ROHR F, RYTTER E, RØNNEKLEIV M, SPJELKAVIK A I. A novel, highly efficient catalyst for propane dehydrogenation[J]. Ind Eng Chem Res, 2001,40(22):4741-4748. doi: 10.1021/ie010299+

    20. [20]

      CORTRIGHT R D, HILL J M, DUMESIC J A. Selective dehydrogenation of isobutane over supported Pt/Sn catalysts[J]. Catal Today, 2000,55(3):213-223. doi: 10.1016/S0920-5861(99)00249-7

    21. [21]

      ARMENDÁRIZ H, GUZMÁN A, TOLEDO J A, LIANOS M E, VÁZQUEZ A, AGUILAR-RIÍOS G. Isopentane dehydrogenation on Pt-Sn catalysts supported on Al-Mg-O mixed oxides: Effect of Al/Mg atomic ratio[J]. Appl Catal A: Gen, 2001,211(1):69-80. doi: 10.1016/S0926-860X(00)00836-X

    22. [22]

      GALVITA V, SIDDIQI G, SUN P, BELL A T. Ethane dehydrogenation on Pt/Mg (Al) O and PtSn/Mg (Al) O catalysts[J]. J Catal, 2010,271(2):209-219. doi: 10.1016/j.jcat.2010.01.016

    23. [23]

      WU J, PENG Z, BELL A T. Effects of composition and metal particle size on ethane dehydrogenation over PtxSn100-x/Mg (Al) O (70≤x≤100)[J]. J Catal, 2014,311:161-168. doi: 10.1016/j.jcat.2013.11.017

    24. [24]

      LONG L L, LANG W Z, LIU X, HU C L, CHU L F, GUO Y J. Improved catalytic stability of PtSnIn/xCa-Al catalysts for propane dehydrogenation to propylene[J]. Chem Eng J, 2014,257:209-217. doi: 10.1016/j.cej.2014.07.044

    25. [25]

      LIU X, LANG W Z, LONG L L, HU C L, CHU L F, GUO Y J. Improved catalytic performance in propane dehydrogenation of PtSn/γ-Al2O3 catalysts by doping indium[J]. Chem Eng J, 2014,247:183-192. doi: 10.1016/j.cej.2014.02.084

    26. [26]

      THORMÄHLEN P, SKOGLUNDH M, FRIDELL E, ANDERSSON B. Low-temperature CO oxidation over platinum and cobalt oxide catalysts[J]. J Catal, 1999,188(2):300-310. doi: 10.1006/jcat.1999.2665

    27. [27]

      LÖÖF P, KASEMO B, ANDERSSON S, FRESTAD A. Influence of ceria on the interaction of CO and NO with highly dispersed Pt and Rh[J]. J Catal, 1991,130(1):181-191. doi: 10.1016/0021-9517(91)90102-A

    28. [28]

      BURCH R. Platinum-tin reforming catalysts: Ⅰ. The oxidation state of tin and the interaction between platinum and tin[J]. J Catal, 1981,71(2):348-359. doi: 10.1016/0021-9517(81)90238-4

    29. [29]

      BALLARINI A D, RICCI C G, MIGUEL S R, SCELZA O A. Use of Al2O3-SnO2 as a support of Pt for selective dehydrogenation of light paraffins[J]. Catal Today, 2008,133:28-34.

    30. [30]

      SERRANO-RUIZ J C, HUBER G W, SÁNCHEZ-CASTILLO M A, DUMESIC J A, RODRÍGUEZ-REINOSO F, SEPÙLVEDA-ESCRIBANO A. Effect of Sn addition to Pt/CeO2-Al2O3 and Pt/Al2O3 catalysts: An XPS, 119 Sn mössbauer and microcalorimetry study[J]. J Catal, 2006,241(2):378-388. doi: 10.1016/j.jcat.2006.05.005

    31. [31]

      HARRIS J J W, FIORIN V, CAMPBELL C T, KING D A. Surface products and coverage dependence of dissociative ethane adsorption on Pt {110}-(1×2)[J]. J Phys Chem B, 2005,109(9):4069-4075. doi: 10.1021/jp045441+

    32. [32]

      WEINBERG W H, SUN Y K. Quantification of primary versus secondary CH bond cleavage in alkane activation: Propane on Pt[J]. Science, 1991,253(5019):542-545. doi: 10.1126/science.253.5019.542

    33. [33]

      LIU Z P, HU P. General rules for predicting where a catalytic reaction should occur on metal surfaces: A density functional theory study of CH and CO bond breaking/making on flat, stepped, and kinked metal surfaces[J]. J Am Chem Soc, 2003,125(7):1958-1967. doi: 10.1021/ja0207551

    34. [34]

      VANG R T, HONKALA K, DAHL S, VESTERGAARD E K, SCHNADT J, LÆGSGAARD E, CLAUSEN B S, NØRSKOV J K, BESENBACHER F. Controlling the catalytic bond-breaking selectivity of Ni surfaces by step blocking[J]. Nat Mater, 2005,4(2):160-162. doi: 10.1038/nmat1311

    35. [35]

      RIOUX R M, SONG H, HOEFELMEYER J D, YANG P, SOMORJAI G A. High-surface-area catalyst design: synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica[J]. J Phys Chem B, 2005,109(6):2192-2202. doi: 10.1021/jp048867x

  • 加载中
    1. [1]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    2. [2]

      Feng Liang Desheng Li Yuting Jiang Jiaxin Dong Dongcheng Liu Xingcan Shen . Method Exploration and Instrument Innovation for the Experiment of Colloid ζ Potential Measurement by Electrophoresis. University Chemistry, 2024, 39(5): 345-353. doi: 10.3866/PKU.DXHX202312009

    3. [3]

      Xinyu Liu Weiran Hu Zhengkai Li Wei Ji Xiao Ni . Algin Lab: Surging Luminescent Sea. University Chemistry, 2024, 39(5): 396-404. doi: 10.3866/PKU.DXHX202312021

    4. [4]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Shiyang He Dandan Chu Zhixin Pang Yuhang Du Jiayi Wang Yuhong Chen Yumeng Su Jianhua Qin Xiangrong Pan Zhan Zhou Jingguo Li Lufang Ma Chaoliang Tan . 铂单原子功能化的二维Al-TCPP金属-有机框架纳米片用于增强光动力抗菌治疗. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-. doi: 10.1016/j.actphy.2025.100046

    7. [7]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    8. [8]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Sinong WangShanshan JinXue YangYanyan HuangPeng LiuYi TangYuliang Yang . Development of Mg-Al LDH and LDO as novel protective materials for deacidification of paper-based relics. Chinese Chemical Letters, 2024, 35(9): 109890-. doi: 10.1016/j.cclet.2024.109890

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    13. [13]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Xiaoxuan Yu Wukun Liu . Practice of Ideological and Political Education in Medicinal Chemistry for Pharmacy Administration Major: A Case Study on the Discovery of Cisplatin’s Anticancer Function. University Chemistry, 2025, 40(4): 408-414. doi: 10.12461/PKU.DXHX202405200

    16. [16]

      Lina WangHairu WangQian BuQiong MeiJunbo ZhongBo BaiQizhao Wang . Al-O bridged NiFeOx/BiVO4 photoanode for exceptional photoelectrochemical water splitting. Chinese Chemical Letters, 2025, 36(4): 110139-. doi: 10.1016/j.cclet.2024.110139

    17. [17]

      Junhao DaiZhu HeXinhai LiGuochun YanHui DuanGuangchao LiZhixing WangHuajun GuoWenjie PengJiexi Wang . Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2. Chinese Chemical Letters, 2025, 36(6): 110063-. doi: 10.1016/j.cclet.2024.110063

    18. [18]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    19. [19]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    20. [20]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

Metrics
  • PDF Downloads(2)
  • Abstract views(2631)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return