Citation: WANG Qing, CHENG Feng, PAN Shuo. Molecular dynamics-quantum model simulation of pyrolysis reactivity of kerogen in oil shale from Fushun[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(8): 905-917. shu

Molecular dynamics-quantum model simulation of pyrolysis reactivity of kerogen in oil shale from Fushun

  • Corresponding author: WANG Qing, rlx888@126.com
  • Received Date: 17 April 2018
    Revised Date: 23 May 2018

    Fund Project: the National Natural Science Foundation of China 51676032The project was supported by the National Natural Science Foundation of China(51676032)

Figures(10)

  • Using the Forcite module in MS (Materials Studio 2017) software, the energy minimization molecular dynamics simulation was performed on the self-constructed two-dimensional structural model of Fushun oil shale kerogen, and the initial optimized structure of kerogen was obtained through the energy optimization process. Then, molecular dynamics annealing simulations were performed to obtain a global energy optimization configuration, ie a three-dimensional structural model of oil shale kerogen molecules. Based on the density functional theory of quantum mechanics simulation method, a three-dimensional structural model of kerogen dynamics, bond energy, bond level, charge density and other parameters were calculated, and the chemical active sites were analyzed. The microchemical evolution mechanism of kerogen pyrolysis was discussed. And then, the reactivity was predicted.
  • 加载中
    1. [1]

      ZHAN Jin-hui, LAI Deng-guo, XU Guang-wen. Oil shale:Solid petroleum[J]. Sci World, 2016(12):68-73.  

    2. [2]

      ZHU Yu-kai, ZHANG Yu-zhe. Analysis of utilization of foreign oil shale resources[J]. Chem Des Commun, 2016,42(1):152-152.  

    3. [3]

      WANG Zhong-xin, ZHAO Dan-dan. Research and practice of oil shale resource development potential evaluation[J]. Ope Min Technol, 2016,31(5):83-87.  

    4. [4]

      WANG Qing, XU Xiang-cheng, CHI Ming-shu, ZHANG Hong-xi, CUI Da, BAI Jing-ru. FT-IR study on composition of oil shale kerogen and its pyrolysis oil generation characteristics[J]. J Fuel Chem Technol, 2015,43(10):1158-1166. doi: 10.3969/j.issn.0253-2409.2015.10.002 

    5. [5]

      WANG Yu, GAO Yan, BAI Xiang-fei, WU Lin-lin. Characteristics and enrichment characteristics of organic lithofacies of huadian oil shale[J]. J Fuel Chem Technol, 2016,44(3):321-327.  

    6. [6]

      KUMAR R, BANSAL V, BADHE R M, MADHIRA I S S, SUGUMARAN V, AHMED S, CHRISTOPHER J, PATEL M B, BASU B. Characterization of Indian origin oil shale using advanced analytical techniques[J]. Fuel, 2013,113:610-616. doi: 10.1016/j.fuel.2013.05.055

    7. [7]

      LⅡV S, KAASIK M. Trace metals in mosses in the estonian oil shale processing region[J]. J Atmos Chem, 2004,49(1):563-578.

    8. [8]

      ZHOU B, SHI L, LIU Q, LIU Z. Examination of structural models and bonding characteristics of coals[J]. Fuel, 2016,184:799-807. doi: 10.1016/j.fuel.2016.07.081

    9. [9]

      RU X, CHENG Z Q, SONG L H, WANG H Y, LI J F. Experimental and computational studies on the average molecular structure of Chinese Huadian oil shale kerogen[J]. J Mol Struct, 2012,1030(4):10-18.

    10. [10]

      WANG Qing, HUANG Zong-yue, CHI Ming-shu, SHI Ju-yi, WANG Zhi-chao, SUI Yi. Analysis of chemical structure of oil shale kerogen[J]. CIESC J, 2015,66(5):1861-1866.  

    11. [11]

      GUAN X H, LIU Y, WANG D, WANG Q, CHI M S, LIU S, LIU C G. Three-dimensional structure of huadian oil shale kerogen model:An experimental and theoretical study[J]. Energy Fuels, 2015,29(7):4122-4136. doi: 10.1021/ef502759q

    12. [12]

      FAULON J L, VANDENBROUCKE M, DRAPPIER J M, BEHAR F, ROMERO M. 3D chemical model for geological macromolecules[J]. Org Geochem, 1990,16(4):981-993.

    13. [13]

      ORENDT A M, PIMIENTA S O, BADU S R, SOLUM M S, PUGMIRE R J, FACELLI J C. Three-dimensional structure of the siskin green river oil shale kerogen model:A comparison between calculated and observed properties[J]. Energy Fuels, 2013,27(2):702-710. doi: 10.1021/ef3017046

    14. [14]

      COLLELL J, UNGERER P, GALLIERO G, YIANNOURAKOU M, MONTEL F, PUJOL M. Molecular simulation of bulk organic matter in type Ⅱ shales in the middle of the oil formation window[J]. Energy Fuels, 2014,28(12):7457-7466. doi: 10.1021/ef5021632

    15. [15]

      COLLELL J, GALLIERO G, VERMOREL R, UNGERER P, YIANNOURAKOU M, MONTEL F, PUJOL M. Transport of multicomponent hydrocarbon mixtures in shales organic matter by molecular simulations[J]. J Phys Chem C, 2015,119(39):22587-22595. doi: 10.1021/acs.jpcc.5b07242

    16. [16]

      UNGERER P, COLLELL J, YIANNOURAKOU M. Molecular modeling of the volumetric and thermodynamic properties of kerogen:In fluence of organic type and maturity[J]. Energy Fuels, 2015,29(1):91-105. doi: 10.1021/ef502154k

    17. [17]

      GAO Y, ZOU Y R, LIANG T, PENG P. Jump in the structure of Type Ⅰ kerogen revealed from pyrolysis and 13C DP MAS NMR[J]. Org Geochem, 2017,112:105-118. doi: 10.1016/j.orggeochem.2017.07.004

    18. [18]

      WANG Qing, CHENG Feng, PAN Shuo. Study on chemical bond concentration and energy density of oil shale kerogen[J]. J Fuel Chem Techol, 2017,45(10):1209-1218. doi: 10.3969/j.issn.0253-2409.2017.10.008 

    19. [19]

      ZHANG Z, JAMILI A. Modeling the Kerogen 3D Molecular Structure[C]//SPE/CSUR Unconventional Resources Conference. 2015.

    20. [20]

      MA Yan-ping. The supramolecular construction and molecular simulation of Liulin 3# coal[D]. Taiyuan: Taiyuan University of Technology, 2012.

    21. [21]

      ZHANG Shi-liang, WEI Li, GAO Wei, FENG Shi-dong, LIU Ri-ping. A Summary of structural analysis and characterization methods commonly used in molecular simulation[J]. J Yanshan Univ, 2015,39(3):213-220.  

    22. [22]

      GUAN X H, WANG D, WANG Q, CHI M S, LIU C G. Estimation of various chemical bond dissociation enthalpies of large-sized kerogen molecules using DFT methods[J]. Mol Phys, 2016,114(11):1705-1755. doi: 10.1080/00268976.2016.1143983

    23. [23]

      WANG Q, LIU Q, WANG Z C, LIU H P, BAI J R, YE J B. Characterization of organic nitrogen and sulfur in the oil shale kerogens[J]. Fuel Process Technol, 2017,160:170-177. doi: 10.1016/j.fuproc.2017.02.031

    24. [24]

      WANG Qing, ZHANG Yan, CHI Ming-shu. Analysis of pyrolysis characteristics in pyrolysis of kerogen[J]. Acta Pet Sin(Pet Process Sect), 2017,33(3):507-514.  

    25. [25]

      LI Hui-li, QIU Nan-sheng, JIN Zhi-jun, HE Zhi-liang, ZHU Ying-kang. Inversion of thermal history of carbonate formation using kerogen radical concentration[J]. Oil Gas Geol, 2005,26(3):337-343. doi: 10.11743/ogg20050312

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    3. [3]

      Wenliang Wang Weina Wang Sufan Wang Tian Sheng Tao Zhou Nan Wei . “Schrödinger Equation – Approximate Models – Core Concepts – Simple Applications”: Constructing a Logical Framework and Knowledge Graph of Atom and Molecule Structures. University Chemistry, 2024, 39(8): 338-343. doi: 10.3866/PKU.DXHX202312084

    4. [4]

      Junqiao Zhuo Xinchen Huang Qi Wang . Symbol Representation of the Packing-Filling Model of the Crystal Structure and Its Application. University Chemistry, 2024, 39(3): 70-77. doi: 10.3866/PKU.DXHX202311100

    5. [5]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    6. [6]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    7. [7]

      Rui Li Jiayu Zhang Anyang Li . Two Levels of Understanding of Chemical Bonds: a Case of the Bonding Model of Hypervalent Molecules. University Chemistry, 2024, 39(2): 392-398. doi: 10.3866/PKU.DXHX202308051

    8. [8]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    9. [9]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    10. [10]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    11. [11]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    12. [12]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    13. [13]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    14. [14]

      Xintian Xie Sicong Ma Yefei Li Cheng Shang Zhipan Liu . Application of Machine Learning Potential-based Theoretical Simulations in Undergraduate Teaching Laboratory Course Design. University Chemistry, 2025, 40(3): 140-147. doi: 10.12461/PKU.DXHX202405164

    15. [15]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    16. [16]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

    17. [17]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    18. [18]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    19. [19]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    20. [20]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

Metrics
  • PDF Downloads(7)
  • Abstract views(389)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return