Citation: YANG Gang-sheng, ZENG Gan-ning, ZHAO Qiang, CHEN Xu, CHEN Sheng-ji, AI Ning. Preparation of silica gel supported amino acid ionic liquids and their performance capacity towards carbon dioxide[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 106-112. shu

Preparation of silica gel supported amino acid ionic liquids and their performance capacity towards carbon dioxide

  • Corresponding author: AI Ning, aining@zjut.edu.cn
  • Received Date: 24 July 2015
    Revised Date: 29 September 2015

    Fund Project: The project was supported by the Public Welfare Project of Science and Technology Department of Zhejiang Province 2013C33005

Figures(6)

  • Two amino acid ionic liquids (AAILs), viz., tetramethyl ammonium glycinate ([N1111][Gly]) and tetramethyl ammonium lysine ([N1111][Lys]) were supported on porous silica gel through impregnation evaporation method and used as the adsorbents for carbon dioxide. They were characterized by elemental analysis (EA), thermogravimetric analysis (TGA), nitrogen physisorption and Fourier transform infrared (FT-IR) spectroscopy; the effects of AAIL type, loading and temperature on their adsorption capacity towards carbon dioxide were investigated. The results illustrate that AAILs are successfully immobilized into the porous silica gel and the supported sorbents exhibit excellent performance towards carbon dioxide, i.e. fast adsorption rate and high capacity. At 303.15-323.15 K, the adsorption capacity reduces with the increase of temperature, whereas there is a optimal loading of ionic liquids to get highest adsorption capacity towards carbon dioxide. Under 30 ℃ and 0.1 MPa, the [N1111][Gly]/SG adsorbent with a [N1111][Gly] loading of 22.4% exhibits the highest CO2 capture capacity, i.e. 41 mg/g, equivalent to 0.62 mol CO2 per mol AAILs; moreover, 90% of the equilibrium adsorption amount can be achieved in 20 min. Furthermore, no obvious decrease in the adsorption capacity is observed after recycling for six times.
  • 加载中
    1. [1]

      GIANNOULAKIS S, VOLKART K, BAUER C. Life cycle and cost assessment of mineral carbonation for carbon capture and storage in European power generation[J]. Int J Greenhouse gas Control, 2014,21(2):140-157.  

    2. [2]

      FEI W Y, AI N, CHEN J. Capture and separation of greenhouse gases CO2-the challenge and opportunity for separation technology[J]. Chem Ind Eng Prog, 2005,24(1):1-4.

    3. [3]

      MACDOWELL N, FLORIN N, BUCHARD A, HALLETT J, GALINDO A, JACKSON G, ADJIMAN C S, WILLIAMS C K, SHAH N, FENNELL P. An overview of CO2 capture technologies[J]. Energy Environ Sci, 2010,3(11):1645-1669. doi: 10.1039/c004106h

    4. [4]

      HASIB-UR-RAHMAN M, SIAJ M, LARACHI F. Ionic liquids for CO2 capture-Development and progress[J]. Chem Eng Prog, 2010,49(4):313-322. doi: 10.1016/j.cep.2010.03.008

    5. [5]

      BLANCHARD L A, HANCU D, BECKMAN E J, BRENNECKE J F. Green processing using ionic liquid and CO2[J]. Nature, 1999,399:28-29.  

    6. [6]

      BATES E D, MAYTON R D, NTAI I, DAVIS J H, J R. CO2 capture by a task-specific ionic liquid[J]. J Am Chem Soc, 2002,124(6):926-927. doi: 10.1021/ja017593d

    7. [7]

      WANG C M, LUO X Y, ZHU X, CUI G K, JIANG D E, DENG D S, LI H R, DAI S. The strategies for improving carbon dioxide chemisorption by functionalized ionic liquids[J]. RSC Adv, 2013,3(36):15518-15527. doi: 10.1039/c3ra42366b

    8. [8]

      PENG H, ZHOU Y L, LIU J, ZHANG H B, XIA C L, ZHOU X H. Synthesis of novel amino-functionalized ionic liquids and their application in carbon dioxide capture[J]. RSC Adv, 2013,3(19):6859-6864. doi: 10.1039/c3ra23189e

    9. [9]

      WANG X F, AKHMEDOV N G, DUAN Y H, LUEBKE D, LI B Y. Immobilization of amino acid ionic liquids into nanoporous microspheres as robust sorbents for CO2 capture[J]. J Mater Chem A, 2013,1(9):2978-2982. doi: 10.1039/c3ta00768e

    10. [10]

      WANG X F, AKHMEDOV N G, DUAN Y H, LUEBKE D, HOPKINSON D, LI B Y. Amino acid functionalized ionic liquid solid sorbents for post-combustion carbon capture[J]. ACS Appl Mater Interfaces, 2013,5(17):8670-8677. doi: 10.1021/am402306s

    11. [11]

      JIANG B B, WANG X F, GRAY M L, DUAN Y H, LUEBKE D, LI B Y. Development of amino acid and amino acid-complex based solid sorbents for CO2 capture[J]. Appl Energy, 2013,109(2):112-118.  

    12. [12]

      HANIOKA S, MARUYAMA T, SOTANI T, TERAMOTO M, MATSUYAMA H, NAKASHIMA K, HANAKI M, KUBOTA F, GOTO M. CO2 separation facilitated by task-specific ionic liquids using a supported liquid membrane[J]. J Membrane Sci, 2008(1/2):1-4.  

    13. [13]

      ZHANG J M, ZHANG S J, DONG K, ZHANG Y Q, SHEN Y Q, LV X M. Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids[J]. Chem Eur J, 2006,12(15):4021-4026. doi: 10.1002/(ISSN)1521-3765

    14. [14]

      REN J, WU L B, LI B G. Preparation and CO2 sorption/desorption of N-(3-aminopropyl) aminoethyl tributylphosphonium amino acid salt ionic liquids supported into porous silica particles[J]. Ind Eng Chem Res, 2012,51(23):7901-7909. doi: 10.1021/ie2028415

    15. [15]

      CHEN Yi-feng, WANG Chang-song, DING Jian, YANG Zhu-hong, LU Xiao-hua. CO2 absorption properties of supported[J]. CIESC J, 2014,65(5):1716-1720.  

    16. [16]

      YANG Na, WANG Rui. Preparation of supported amino-ionic liquid and its CO2 adsorption capacity[J]. CIESC J, 2013,64(S1):128-132.  

    17. [17]

      XU X C, SONG C S, ANDRESEN J M, MILLER B G, SCARONI A W. Novel polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture[J]. Energy Fuels, 2002,16(6):1463-1469. doi: 10.1021/ef020058u

    18. [18]

      LIU Zhi-lin, TENG Yang, ZHANG Kai, CAO Yan, PAN Wei-ping. CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials[J]. J Fuel Chem Technol, 2013,41(4):469-475. doi: 10.1016/S1872-5813(13)60025-0 

    19. [19]

      CHEN Lin-lin, WANG Xia, GUO Qing-jie. Study on CO2 adsorption properties of tetraethylenepentamine modified mesoporous silica gel[J]. J Fuel Chem Technol, 2015,43(1):108-115.  

    20. [20]

      JIANG Y Y, WANG G N, ZHOU Z, WU Y T, GENG J, ZHANG Z B. Tetraalkylammonium amino acids as functionalized ionic liquids of low viscosity[J]. Chem Commun, 2008,4(4):505-507.  

    21. [21]

      ZHANG Y Q, ZHANG S J, LU X M, ZHOU Q, FAN W, ZHANG X P. Dual amino-functionalised phosphonium ionic liquids for CO2 capture[J]. Chem-Eur J, 2009,15(12):3003-3011. doi: 10.1002/chem.v15:12

    22. [22]

      ZHANG F, FANG C G, WU Y T, WANG Y T, LI A M, ZHANG Z B. Absorption of CO2 in the aqueous solutions of functionalized ionic liquids and MDEA[J]. Chem Eng J, 2010,160(2):691-697. doi: 10.1016/j.cej.2010.04.013

    23. [23]

      HO N L, PORCHERON F, PELLENQ J M. Experimental and molecular simulation investigation of enhanced CO2 solubility in hybrid adsorbents[J]. Langmuir, 2010,26(16):13287-13296. doi: 10.1021/la1015934

    24. [24]

      GRAY M L, HOFFMAN J S, HREHA D C, FAUTH D J, HEDGES S W, CHAMPAGNE K J, PENNLINE H W. Parametric study of solid amine sorbents for the capture of carbon dioxide[J]. Energy Fuels, 2009,23(10):4840-4844. doi: 10.1021/ef9001204

    25. [25]

      LEE J S, HILLESHEIM P C, HUANG D, LIVELY R P, OH K H, DAI S, KOROS W J. Hollow fiber-supported designer ionic liquid sponges for post-combustion CO2 scrubbing[J]. Polymer, 2012,53(25):5806-5815. doi: 10.1016/j.polymer.2012.10.017

    26. [26]

      ZHANG Hua-li, YAN Chun-jie, ZHOU Hong, CHEN Jie-yu, PAN Zhi-quan. Study on CO2 adsorption of sepiolite modified by ionic-liquid[J]. Non-Met Mines, 2014,37(2):75-78.  

    27. [27]

      WANG X, AKHMEDOV N G, DUAN Y, LUEBKE D, HOPKINSON D, LI B. Amino acid functionalized ionic liquid solid sorbents for post-combustion carbon capture[J]. ACS Appl Mater Interfaces, 2013,5(17):8670-8677. doi: 10.1021/am402306s

  • 加载中
    1. [1]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    2. [2]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    3. [3]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    8. [8]

      Xiaofei LiuHe WangLi TaoWeimin RenXiaobing LuWenzhen Zhang . Electrocarboxylation of Benzylic Phosphates and Phosphinates with Carbon Dioxide. Acta Physico-Chimica Sinica, 2024, 40(9): 2307008-0. doi: 10.3866/PKU.WHXB202307008

    9. [9]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Runjie Li Hang Liu Xisheng Wang Wanqun Zhang Wanqun Hu Kaiping Yang Qiang Zhou Si Liu Pingping Zhu Wei Shao . 氨基酸的衍生及手性气相色谱分离创新实验. University Chemistry, 2025, 40(6): 286-295. doi: 10.12461/PKU.DXHX202407059

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    16. [16]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    17. [17]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    18. [18]

      Ping YeLingshuang QinMengyao HeFangfang WuZengye ChenMingxing LiangLibo Deng . Potential of Zero Charge-Mediated Electrochemical Capture of Cadmium Ions from Wastewater by Lotus Leaf-Derived Porous Carbons. Acta Physico-Chimica Sinica, 2025, 41(3): 2311032-0. doi: 10.3866/PKU.WHXB202311032

    19. [19]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    20. [20]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

Metrics
  • PDF Downloads(2)
  • Abstract views(647)
  • HTML views(73)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return