Citation: YAN Jing-sen, WANG Ze-qing, E Yong-sheng, TANG Jun-jie, AI Li-mei, GAO Jun-feng. Synthesis and deep oxidative desulfurization of vanadium-substituted polyoxotungstate phase transfer catalyst[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1337-1345. shu

Synthesis and deep oxidative desulfurization of vanadium-substituted polyoxotungstate phase transfer catalyst

  • Corresponding author: YAN Jing-sen, yanjs910@163.com
  • Received Date: 10 June 2019
    Revised Date: 10 September 2019

    Fund Project: the Key Projects of Natural Science Foundation of Liaoning Province 20180550114PhD Research Startup Foundation of Liaoning Institute of Science and Technology 1810B06The projecct was supported by the Key Projects of Natural Science Foundation of Liaoning Province (20170540475, 20180550114), PhD Research Startup Foundation of Liaoning Institute of Science and Technology (1810B08, 1810B06)and Undergraduate Training Programms for Innovation and Entrepreneurship of Liaoning Institute of Science and Technology (201911430056)PhD Research Startup Foundation of Liaoning Institute of Science and Technology 1810B08the Key Projects of Natural Science Foundation of Liaoning Province 20170540475Undergraduate Training Programms for Innovation and Entrepreneurship of Liaoning Institute of Science and Technology 201911430056

Figures(10)

  • A series of phase transfer catalysts, composed of vanadium-substituted phosphotungstic acid(H4[PW11VO40]) and different quaternary cationics were synthesized through ion exchange method. The characterization of FT-IR spectroscopy and X-ray diffraction confirmed that the integrity of polyoxometalate anions and quaternary ammonium cations immobilized in the phase transfer catalyst. The as-prepared catalysts were applied to the catalytic oxidative desulfurization of model diesel oil using H2O2 as oxidant. The influencing factors such as quaternary cationics species, catalyst composition, catalyst amount, oxygen-sulfur ratio and reaction temperature were investigated.[(C16H33(CH3)3)N]3H[PW11VO40] is found to be efficient and reusable catalyst for oxidative desulfurization reaction. Under the optimized reaction conditions of n(catalyst)/n(model diesel)=1:80, n(H2O2)/n(model diesel)=8:1, 50℃, 3 h, the catalyst exhibits the dibenzothiophene conversion of 100% and excellent reusability with 99.7% conversion after five times reaction. The catalyst and reactants form a microemulsion system and behave like homogeneous mixture during reaction, but precipitates with biphase separation when the reaction ends. The catalyst could be quickly separated and recycled by centrifugation.
  • 加载中
    1. [1]

      BANISHARIF F, DEHGHANI M R, CAMPOS-MARTIN J M. Oxidative desulfurization of diesel using vanadium-substituted dawson-type emulsion catalysts[J]. Energy Fuels, 2017,31(5):5419-5427. doi: 10.1021/acs.energyfuels.6b02791

    2. [2]

      SONG C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003,86(1):211-263.  

    3. [3]

      ABRO R, GAO S R, CHEN X C. Oxidative desulfurization of gasoline by ionic liquids coupled with extraction by organic solvents[J]. J Brazil Chem Soc, 2016,27(6):998-1006.  

    4. [4]

      WANG D, EIKA W Q, AMANO H, OKATA K, LSHIHARA A, KABE T. Oxidative desulfurization of fuel oil Part Ⅰ. Oxidation of dibenzothiophenes using tert-butyl hydroperoxide[J]. Appl Catal A:Gen, 2003,253(1):91-99. doi: 10.1016/S0926-860X(03)00528-3

    5. [5]

      OTSUKI S, NONAKA T, TAKASHIMA N, QIAN W, LSHIHARA A, LMAI T, KABE T. Oxidative desulfurization of light gas oil and vacuum gas oil by oxidation and solvent extraction[J]. Energy Fuels, 2000,14(6):1234-1239.  

    6. [6]

      LIANG W D, ZHANG S, LI H F, ZHANG G. Oxidative desulfurization of simulated gasoline catalyzed acetic acid-based ionice liquids at room temperature[J]. Fuel Process Technol, 2013,109(2):27-31.  

    7. [7]

      SHIRAISHI Y, NAITO T, HIRAI T. Vanadosilicate molecular sieve as a catalyst for oxidative desulfurization of light oil[J]. Ind Eng Chem Res, 2003,42(24):6034-6039. doi: 10.1021/ie030328b

    8. [8]

      WANG R, ZHANG G, ZHAO H. Polyoxometalate as effective catalyst for the deep desulfurization of diesel oil[J]. Catal Today, 2010,149(1/2):15358-15359.  

    9. [9]

      BANISHARIF F, DEHGHANI M R, CAPEL-SANCHEZ M C, CAMPOS-MARTIN J M. Desulfurization of fuel by extraction and catalytic oxidation using a vanadium substituted dawson-type emulsion catalyst[J]. Ind Eng Chem Res, 2017,56(14):3839-3852. doi: 10.1021/acs.iecr.7b00089

    10. [10]

      MAHDIEH S, BABAK M, HAMID R M, KUROSH T H, ALI S, MOJTABA M. Oxidative desulfurization of diesel fuel using a bronsted acidic ionic liquid supported on silica gel[J]. Energy Fuels, 2017,31(9):10196-10205. doi: 10.1021/acs.energyfuels.6b03505

    11. [11]

      LI S W, GAO R M, ZHAO J S. Deep oxidative desulfurization of fuel catalyzed by modified heteropolyacid:The comparison performance of three kinds of ionic liquids[J]. ACS Sustainable Chem Eng, 2018,6(11):15858-15866. doi: 10.1021/acssuschemeng.8b04524

    12. [12]

      ZHANG J, WANG A J, LI X, MA X H. Oxidative desulfurization of dibenzothiophene and diesel over[Bmim]3PMo12O40[J]. J Catal, 2011,279(2):269-275.  

    13. [13]

      HUA Z, BAKER G A. Oxidative desulfurization of fuels using ionic liquids[J]. Front Chem Sci Eng, 2015,9(3):262-279. doi: 10.1007/s11705-015-1528-0

    14. [14]

      WANG En-bo. Guidance to Polyoxometalates[M]. Beijing:Chemical Industry Press, 1998.

    15. [15]

      ZHANG Hai-yan, DAI Yue-li, CAI Lei. Research progress of heteropoly acid catalyzed oxidative desulfurization[J]. Chem Ind Eng Prog, 2013,32(4):809-815.  

    16. [16]

      TE M, FAIRBRIDGE C, RING Z. Oxidation reactivities of dibenzothiophenes in polyoxometalate-H2O2 and formic acid-H2O2 systems[J]. Appl Catal A:Gen, 2001,219:267-280. doi: 10.1016/S0926-860X(01)00699-8

    17. [17]

      LI B, LIU Z, HAN C. In situ synthesis, characterization, and catalytic performance of tungtophosphoric acid encapsulated into the framework of mesoporous silica pillared clay[J]. J Colloid Interf Sci, 2012,377(1):334-341. doi: 10.1016/j.jcis.2012.03.067

    18. [18]

      ZHANG Y N, WANG L, ZHANG Y L, JIANG Z X, LI C. Ultra-deep oxidative desulfurization of fuel oil catalyzed by dawson-type polyoxotungstate emulsion catalysts[J]. Chin J Catal, 2011,32(1):235-239.  

    19. [19]

      QI W, WANG Y Z, LI W, WU L X. Surfactant-encapsulated polyoxometalates as immobilized supramolecular catalysts for highly efficient and selective oxidation reactions[J]. Chem Eur J, 2010,16(3):1068-1078. doi: 10.1002/chem.200902261

    20. [20]

      HUANG D, ZHAI Z, LU Y C, YANG L M, LUO G S. Optimization of composition of a directly combined catalyst in dibenzothiophene oxidation for deep desulfurization[J]. Ind Eng Chem Res, 2007,46(5):1447-1451. doi: 10.1021/ie0611857

    21. [21]

      LI C, JIANG Z X, GAO J B, YANG Y X, WANG S J, TIAN F P, SUN F X, SUN X P, YING P L, HAN C R. Ultra-deep desulfurization of diesel:Oxidation with a recoverable catalyst assembled in emulsion[J]. Chem Eur J, 2004,10(9):2277-2280. doi: 10.1002/chem.200305679

    22. [22]

      LI C, GAO J B, JIANG Z G, WANG S G, LU H Y, YANG Y X, JING F. Selective oxidations on recoverable catalysts assembled in emulsions[J]. Top Catal, 2005,35(1/2):169-175.  

    23. [23]

      ZHANG Y J, GU Y F, DONG X B, WU P F, LI Y L, HU H M, XUE G L. Deep oxidative desulfurization of refractory sulfur compounds with cesium salts of mono-substituted phosphomolybdate as efficient catalyst[J]. Catal Lett, 2017,147(7):1811-1819. doi: 10.1007/s10562-017-2078-5

    24. [24]

      LU H Y, GAO J B, JIANG Z X, JING F, YANG Y X, WANG G, LI C. Ultra-deep desulfurization of diesel by selective oxidation with[C18H37N(CH3)3]4[H2NaPW10O36]catalyst assembled in emulsion droplets[J]. J Catal, 2006,239(2):369-375. doi: 10.1016/j.jcat.2006.01.025

    25. [25]

      XU J H, ZHAO S, JI Y C, SONG Y F. Deep desulfurization by amphiphilic lanthanide-containing polyoxometalates in ionic-liquid emulsion systems under mild conditions[J]. Chem Eur J, 2013,19(2):709-715. doi: 10.1002/chem.201202595

    26. [26]

      ZHANG Ye-hong. Synthesis, characterization and catalytic performance of keggin type heteropolyacid phase-transfer catalysts[D]. Lanzhou: Lanzhou University of Technology, 2009.

    27. [27]

      YAN Jing-sen, AI Li-mei, WANG Qiang, WANG Ze-qing, E Yong-sheng, LIU Hai-bin. Synthesis, characterization and esterification application of acid-functionalized ternary heteropolyanion-based ionic liquids with temperature-responsive behaviour[J]. Chin J Inorg Chem, 2018,34(12):2179-2187. doi: 10.11862/CJIC.2018.272

    28. [28]

      WU X F, HUANG T P, TONG X, XIE Z R, CHEN W X, WU Q Y, YAN W F. Thermoregulated polyoxometalate-based ionic-liquid gel electrolytes[J]. RSC Adv, 2015,5(28):21973-21977. doi: 10.1039/C5RA02209F

    29. [29]

      WU X F, TONG X, WU Q Y, DING H, YAN W F. Reversible phase transformation-type electrolyte based on layered shape polyoxometalate[J]. J Mater Chem A, 2014,2(16):5780-5784. doi: 10.1039/c3ta15237e

    30. [30]

      QI Yue-hong, LIU Qian, LIU Yun-qi, LIU Chen-guang. Synthesis of polytungstozincic quaternary ammonium salts and application in catalytic oxidation desulfurization[J]. Pet Process Pet Chem, 2015,46(6):52-56. doi: 10.3969/j.issn.1005-2399.2015.06.016

    31. [31]

      YAMAURA T, KAMATA K, YAMAGUCHI K. Efficient sulfoxidation with hydrogen peroxide catalyzed by a divanadium-subtituted phosphotungstate[J]. Catal Today, 2013,203:76-81. doi: 10.1016/j.cattod.2012.01.026

    32. [32]

      WANG Liang. Study on desulfurization of oil catalyzed oxidation by supported heteropoly acid in microemulsion[D]. Qingdao: Ocean University of China, 2011. 

    33. [33]

      LIU Ri-jia, WANG Rui, KORCHAK V. Synthesis, charaterization and catalytic fuel ultra-deep desulfurization of keggin-type polyoxometalates[J]. Chin J Inorg Chem, 2014,30(3):563-572.  

  • 加载中
    1. [1]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . S型ZnO/CdIn2S4光催化剂制备H2O2偶联苄胺氧化的超快电子转移飞秒吸收光谱研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    2. [2]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    3. [3]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    8. [8]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    9. [9]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    10. [10]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    11. [11]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    12. [12]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . 设计热力学稳定的贵金属单原子光催化剂用于乙醇的高效非氧化转化形成高纯氢和增值产物乙醛. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    13. [13]

      Ke Li Chuang Liu Jingping Li Guohong Wang Kai Wang . 钛酸铋/氮化碳无机有机复合S型异质结纯水光催化产过氧化氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    19. [19]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(17)
  • Abstract views(1135)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return