Citation: YANG Li, ZHANG Chen, YUE Tao, ZHANG Fan, SHU Xin-qian, TONG Li. Research on the mechanism of xK/MgAlO hydrotalcite for the catalytic combustion of soot[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1528-1536. shu

Research on the mechanism of xK/MgAlO hydrotalcite for the catalytic combustion of soot

  • Corresponding author: SHU Xin-qian, shuxinqian@126.com
  • Received Date: 6 August 2018
    Revised Date: 17 October 2018

    Fund Project: the Youth Core Plan of Beijing Academy of Science and Technology YC201806the National Natural Science Foundation of China 51074170the National Key Research and Development Plan of "Causes and Control of Air Pollution" 2016YFC0208103The project was supported by the National Natural Science Foundation of China (51074170), the Youth Core Plan of Beijing Academy of Science and Technology (YC201806) and the National Key Research and Development Plan of "Causes and Control of Air Pollution"(2016YFC0208103)

Figures(6)

  • The Mg-Al hydrotalcites used as the support were prepared by precipitation method, and then the catalysts with different amount of doped potassium, (xK/MgAlO) were prepared by impregnation method. The effects of K on the structure and catalytic activity of the xK/MgAlO catalyst were investigated in SO2 containing gases. The key mechanism of K-doped (xK/MgAlO) catalysts to reduce the soot ignition temperature during the reaction was illustrated. The differences of the crystal structure between calcined and uncalcined Mg-Al hydrotalcite were studied by X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and the transient response method. The experimental results showed that the 3R layered structure of Mg-Al hydrotalcite disappeared while the spinel phase appeared, and the layered structure collapsed into spherical particles after calcination. Potassium doping formed more oxygen vacancies that are conducive to the combustion of diesel soot, decreased the temperature of soot combustion from 380 to 253℃ though in SO2 atmosphere and significantly enhanced the conversion efficiency of NOx.
  • 加载中
    1. [1]

      NEEFT J P A, MAKKEE M, MOULIJIN J A. Diesel particulate emission control[J]. Fuel Process Technol, 1996,47:1-69. doi: 10.1016/0378-3820(96)01002-8

    2. [2]

      JOHNSON T V. Diesel emission control in review[J]. SAE Int J Fuels Lubr, 20062006-01-0030.  

    3. [3]

      HE Hong, WEN Duan, ZI Xin-yun. Diesel emission control technologies:A review[J]. Environ Sci, 2007,28(6):1169-1177. doi: 10.3321/j.issn:0250-3301.2007.06.001

    4. [4]

      WANG Lin-jiang, GUO Zi-feng, WU Qun-ying. Advances in four-way catalytic technology for diesel vehicle exhaust gas purification[J]. Ind Catal, 2009,17(5):3-6.  

    5. [5]

      ZHOU Ke-bin, CHEN Hong-de, TIAN Qun, SHEN Di-xin, XU Xiao-bai. Study on the effect of doped chemicals palladium on the performance of Co and Fe series perovskite-type three-way catalysts[J]. Environ Chem, 2002,21:218-223. doi: 10.3321/j.issn:0254-6108.2002.03.002

    6. [6]

      JOHNSON T. Diesel engine emissions and their control[J]. Platinum Met Rev, 2008,52(1):23-37. doi: 10.1595/147106708X248750

    7. [7]

      HAN Xiao-wei, WANG Ying. Progresses in preparation and application of hydrotalcite and hydrotalcite-like materials[J]. Jiangsu Chem Ind, 2003,31(2):26-31.  

    8. [8]

      ZHAO Na. Preparation and catalytic performance of NSR catalysts over magnesium-aluminum[D]. Kunming: Kunming University of Science and Technology, 2014. 

    9. [9]

      TERAOKA Y, KANADA K, KAGAWA S. Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates[J]. Appl Catal B:Environ, 2001,34(1):73-78.  

    10. [10]

      ATRIBAK I, SUCH-BASANEZ I, BUENO-LOPEZ A, GARCIA GARCIA A. Catalytic activity of La-modified TiO2 for soot oxidation by O2[J]. Appl Catal A:Gen, 2006,314(1):81-88. doi: 10.1016/j.apcata.2006.08.002

    11. [11]

      ZHANG Z L, ZHANG Y X, WANG Z P. Catalytic performance and mechanism of potassium-supported Mg-Al hydrotalcite mixed oxides for soot combustion with O2[J]. J Catal, 2010,271:12-21. doi: 10.1016/j.jcat.2010.01.022

    12. [12]

      LI Q, MENG M, ZOU Z Q, LI X G, ZHA Y Q. Simultaneous soot combustion and nitrogen oxides storage on potassium-promoted hydrotalcite-based CoMgAlO catalysts[J]. J Hazard Mater, 2009,161:366-372. doi: 10.1016/j.jhazmat.2008.03.103

    13. [13]

      LI Q, MENG M, TSUBAKI N, LI X G, LI Z Q, XIE Y N, HU T D, ZHANG J. Performance of K-promoted hydrotalcite-derived Co MgAlO catalysts used for soot combustion, NOx storage and simultaneous soot-NOx removal[J]. Appl Catal B:Environ, 2009,91:406-415. doi: 10.1016/j.apcatb.2009.06.007

    14. [14]

      CHMIELARZA L, JABLON'SKA M, STRUMIN'SKI A, PIWOWARSKA Z, WEGRZYN A, WITKOWSKI S, MICHALIK M. Selective catalytic oxidation of ammonia to nitrogen over Mg-Al, Cu-Mg-Al and Fe-Mg-Al mixed metal oxides doped with noble metals[J]. Appl Catal B:Environ, 2013,130:152-162.  

    15. [15]

      WALSPURGER S, BOELS L, COBDEN P D, ELZINGA G D, HAIJE W G, VANDEN BRINK R W. The crucial role of the K+-aluminium oxide interaction in K+-promoted alumina-and hydrotalcite-based materials for CO2 sorption at high temperatures[J]. ChemSusChem, 2008,1(7):643-650. doi: 10.1002/cssc.v1:7

    16. [16]

      ZHANG Z L, ZHANG Y X, SU Q Y, WANG Z P, LI Q, GAO X Y. Determination of intermediates and mechanism for soot combustion with NOx/O2 on potassium-supported Mg Al hydrotalcite mixed oxides by in situ FTIR[J]. Environ Sci Technol, 2010,44:8254-8258. doi: 10.1021/es102363f

    17. [17]

      ZHU L, WANG X, LIANG C. Catalytic combustion of diesel soot over K2NiF4-type oxides La2-xKxCuO4[J]. J Rare Earth, 2008,2:254-257.  

    18. [18]

      IORDAN A, ZAKI M I, KAPPENSTEIN C. Interfacial chemistry in the preparation of catalytic potassium-modified aluminas[J]. J Chem Soc, Faraday Trans, 1993,89(14):2527-2536. doi: 10.1039/ft9938902527

    19. [19]

      LIU Jian, ZHAO Zhen, XU Chun-ming, WANG Hong, DUAN Ai-jun. Preparation, characterization and catalytic behavior of Mn1-x(Li, Ti)xCo2O4 spinel-type complex oxides[J]. J Inorg Chem, 2005,21(9):1306-1310. doi: 10.3321/j.issn:1001-4861.2005.09.006

    20. [20]

      LI Shuang, SHI Yi-xiang, YANG Yi, ZHU Xuan-can, CAI Ning-sheng. Experimental study of CO2 capacity and mechanical Strength of K-promoted hydrotalcite adsorbent[J]. J Eng Thermophy, 2015,36(7):1606-1610.  

    21. [21]

      PENG X S, LIN H, SHANGGUAN W F. Surface properties and catalytic performance of La0.8K0.2Cux Mn1-xO3 for simultaneous removal of NOx and soot[J]. Chem Eng Technol, 2007,30(1):99-104. doi: 10.1002/(ISSN)1521-4125

    22. [22]

      PENG Xiaosheng. Simultaneous removal of NOx and soot by high frequency dielectric barrier discharge and catalysis[D]. Shanghai: Shanghai Jiao Tong University, 2006. 

    23. [23]

      ZHANG Ye-xin, SU Qing-yun, WANG Zhong-peng, GAO Xi-yan, ZHANG Zhao-liang. Surface modification of Mg-Al hydrotalcite mixed oxides with potassium[J]. Acta Phys-Chim Sin, 2010,26(4):921-926. doi: 10.3866/PKU.WHXB20100446

    24. [24]

      WANG Jun-li, WANG Hong, SUN Zhi-qiang, REN Xiao-guang. Performance of La-K-Co-Mn-O oxide catalysts for simultaneous removal of soot and NOx from diesel engine exhaust[J]. Environ Pollut Prevent, 2008,30(12):40-42. doi: 10.3969/j.issn.1001-3865.2008.12.010

    25. [25]

      FINO D, RUSSO N, SARACCO G, SPECCHIA V. Catalytic removal of NOx and diesel soot over nanostructured spinel-type oxides[J]. J Catal, 2006,242(1):38-47.  

    26. [26]

      WANG Zhong-peng, CHEN Ming-xia, SHANG GUAN Wen-feng. Simultaneous catalytic removal of NOx and diesel soot over Cu-containing hydrotalcite derived catalysts[J]. Acta Phys-Chim Sin, 2009,25(1):79-85. doi: 10.3866/PKU.WHXB20090114

    27. [27]

      WANG Y, WEI HAN X, JI A, SHI L Y, HAYASHI S. Basicity of potassium-salt modified hydrotalcite studied by HMANMR using pyrrole as a probe molecule[J]. Microporous Mesoporous Mater, 2005,77(2/3)139.  

    28. [28]

      IORDAN A, ZAKI M I, KAPPENSTEIN C. Interfacial chemistry in the preparation of catalytic potassium-modified alumina[J]. J Chem Soc, 1993,89(14):2527-2536.  

    29. [29]

      LIU Xin, SHU Wang-en, GUI Ke, QU Long. Study on heat stability of dodecyl benzene sulfonate pillared hydrotalcite[J]. China Plast, 2004,18(10):70-72. doi: 10.3321/j.issn:1001-9278.2004.10.016

    30. [30]

      TERAOKA Y, KANADA K, KAGAWA S. Synthesis of La-K-Mn-O perovskite-type oxides and their catalytic property for simultaneous removal of NOx and diesel soot particulates[J]. Appl Catal B:Environ, 2001,34(1):73-78. doi: 10.1016/S0926-3373(01)00202-8

    31. [31]

      NIU J R, DENG J G, LIU W, ZHANG L, WANG G Z, DAI H X, HE H, ZI X H. Nanosized perovskite-type oxides La1-xSrxMO3-δ (M=Co, Mn; x=0, 0.4) for the catalytic removal of ethylacetate[J]. Catal Today, 2007,126:420-429. doi: 10.1016/j.cattod.2007.06.027

    32. [32]

      KANNAN S, SWAMY C S. Catalytic decomposition of nitrous oxide over calcined cobalt aluminum hydrotalcites[J]. Catal Today, 1999,53:725-737. doi: 10.1016/S0920-5861(99)00159-5

    33. [33]

      HADNADJEV M, VUILC T, MARINKOVIC-NEDUCIN R, SUCHORSKI Y, WEISS H. The iron oxidation state in Mg-Al-Fe mixed oxides derived from layered double hydroxides:An XPS study[J]. Appl Surf Sci, 2008,254:4297-4302. doi: 10.1016/j.apsusc.2008.01.063

  • 加载中
    1. [1]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    2. [2]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    3. [3]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    4. [4]

      Haojie DuanHejingying NiuLina GanXiaodi DuanShuo ShiLi Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038

    5. [5]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    6. [6]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    7. [7]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    8. [8]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    9. [9]

      Junjie DuanDan ChenLong ChenShuying LiTing ChenDong Wang . 2D hexagonal tessellations sustained by Br···Br/H contacts: From regular to semiregular to k-uniform tilings. Chinese Chemical Letters, 2025, 36(3): 110445-. doi: 10.1016/j.cclet.2024.110445

    10. [10]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Min WANGDehua XINYaning SHIWenyao ZHUYuanqun ZHANGWei ZHANG . Construction and full-spectrum catalytic performance of multilevel Ag/Bi/nitrogen vacancy g-C3N4/Ti3C2Tx Schottky junction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1123-1134. doi: 10.11862/CJIC.20230477

    13. [13]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    14. [14]

      Cuiwu MOGangmin ZHANGChao WUZhipeng HUANGChi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045

    15. [15]

      Yu-Yu TanLin-Heng HeWei-Min He . Copper-mediated assembly of SO2F group via radical fluorine-atom transfer strategy. Chinese Chemical Letters, 2024, 35(9): 109986-. doi: 10.1016/j.cclet.2024.109986

    16. [16]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    17. [17]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Zimo YangYan TongYongbo LiuQianlong LiuZhihao NiYuna HeYu Rao . Developing selective PI3K degraders to modulate both kinase and non-kinase functions. Chinese Chemical Letters, 2024, 35(11): 109577-. doi: 10.1016/j.cclet.2024.109577

    20. [20]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

Metrics
  • PDF Downloads(8)
  • Abstract views(931)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return