Citation: LI Zhi-peng, NIU Sheng-li, ZHAO Gai-ju, HAN Kui-hua, LI Ying-jie, LU Chun-mei, CHENG Shen. Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 172-178. shu

Molecular simulation study of strontium doping on the adsorption of methanol on CaO(100) surface

  • Corresponding author: NIU Sheng-li, nsl@sdu.edu.cn
  • Received Date: 30 September 2019
    Revised Date: 19 December 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China(51876106), Primary Research & Development Plan of Shandong Province(2018GGX104027), Young Scholars Program of Shandong University(2015WLJH33) and Qilu University of Technology(Shandong Academy of Sciences) Youth PhD Cooperation Fund Project(2018BSHZ0017)The project was supported by the National Natural Science Foundation of China 51876106Qilu University of Technology(Shandong Academy of Sciences) Youth PhD Cooperation Fund Project 2018BSHZ0017Primary Research & Development Plan of Shandong Province 2018GGX104027Young Scholars Program of Shandong University 2015WLJH33

Figures(7)

  • The influence of strontium doping on the adsorption of methanol on calcium oxide surface was investigated by molecular simulation. The model for methanol adsorption onto the CaO(100) and CaO(100)-Sr surfaces was constructed; the adsorption energy and activation energy were then calculated and the density of states was portrayed for the methanol bond on the calcium oxide surface. The methanol activation degrees on the calcium oxide surface before and after strontium doping were then compared by analyzing the Mulliken atomic charge population and deformation density. The results illustrate that the adsorption of methanol onto the calcium oxide surface can be significantly enhanced through the strontium doping; moreover, the enhancement increases with an increase in the doping content of strontium. After doping calcium oxide with strontium, the energy required for methanol activation is reduced; as a result, the strontium doping can also enhance the activation degree of methanol, as methanol is activated upon adsorption onto the calcium oxide surface.
  • 加载中
    1. [1]

      LI Zhen-hua, CHEN Xiao-bing, CHUN Yuan, WU Xing-cai. Active species and deactivation behavior of Al2O3 supported KNO3 catalyst in the synthesis of biodiesel via transesterification of soybean oil[J]. J Fuel Chem Technol, 2018,46(9):1079-1086. doi: 10.3969/j.issn.0253-2409.2018.09.007

    2. [2]

      CHEN Ying, LIU Tian-cong, GAO Yan-hua, LIANG Yu-ning. In situ co-precipitation of NiMg(Al)O on γ-Al2O3 and its catalytic performance in the transesterification[J]. J Fuel Chem Technol, 2018,46(1):59-66. doi: 10.3969/j.issn.0253-2409.2018.01.008

    3. [3]

      DE LUNA M D G, CUASAY J L, TOLOSA N C, CHUNG T W. Transesterification of soybean oil using a novel heterogeneous base catalyst:Synthesis and characterization of Na-pumice catalyst, optimization oftransesterification conditions, studies on reaction kinetics and catalyst reusability[J]. Fuel, 2017,209:246-253. doi: 10.1016/j.fuel.2017.07.086

    4. [4]

      KETCONG A, MEECHAN W, NAREE T, SENEEVONG I, WINITSORN A, BUTNARK S, NGAMCHARUSSRIVICHAI C. Production of fatty acid methyl esters over a limestone-derived heterogeneous catalyst in a fixed-bed reactor[J]. J Ind Eng Chem, 2014,20:1665-1671. doi: 10.1016/j.jiec.2013.08.014

    5. [5]

      NIU S L, HUO M J, LU CM, LIU M Q, LI H. An investigation on the catalytic capacity of dolomite in transesterification and the calculation of kinetic parameters[J]. Bioresour Technol, 2014,158:74-80. doi: 10.1016/j.biortech.2014.01.123

    6. [6]

      TAN Y H, ABDULLAH M O, NOLASCO-HIPOLITO C, ZAUZI N S A. Application of RSM and taguchi methods for optimizing thetransesterification of waste cooking oil catalyzed by solid ostrich andchicken-eggshell derived CaO[J]. Renewable Energy, 2017,114:437-447. doi: 10.1016/j.renene.2017.07.024

    7. [7]

      KRISHNAMURTHY K N, SRIDHARA S N, KUMAR C S A. Optimization and kinetic study of biodiesel production from hydnocarpus wightiana oil and dairy waste scum using snail shell CaO nano catalyst[J]. Renewable Energy, 2020,146:280-296. doi: 10.1016/j.renene.2019.06.161

    8. [8]

      NIU Sheng-li, LIU Meng-qi, LU Chun-mei, LI Hui, HUO Meng-jia. Catalytic performance of carbide slag loaded with potassium fluoride in transesterification[J]. J Fuel Chem Technol, 2014,42(6):690-696.  

    9. [9]

      NIU Sheng-li, LI Hui, LU Chun-mei, LIU Meng-qi, HUO Meng-jia. Catalytic performance of papermaking white clay in the transesterification of peanut oil with methanol[J]. J Fuel Chem Technol, 2013,41(7):856-861. doi: 10.3969/j.issn.0253-2409.2013.07.012

    10. [10]

      YE X Z, WANG W, ZHAO X L, WEN T, LI Y J, MA Z H, WEN L B, YE J F, WANG Y. The role of the KCaF3 crystalline phase on the activity of KF/CaO biodiesel synthesis catalyst[J]. Catal Commun, 2018,116:72-75. doi: 10.1016/j.catcom.2018.08.016

    11. [11]

      TANG Y, GU X F, CHEN G. 99% yield biodiesel production from rapeseed oil using benzyl bromide-CaO catalyst[J]. Environ Chem Lett, 2013,11:203-208. doi: 10.1007/s10311-013-0403-9

    12. [12]

      LEE H V, JUAN J C, TAUFIQ-YAP Y H. Preparation and application of binary acid-base CaO-La2O3 catalyst for biodiesel production[J]. Renewable Energy, 2015,74:124-132. doi: 10.1016/j.renene.2014.07.017

    13. [13]

      DELESMA C, CASTILLO R, SEVILLA-CAMACHO P Y, SEBASTIAN P J, MUNIZ J. Density functional study on the transesterification of triacetin assisted by cooperative weak interactions via a gold heterogeneous catalyst:Insights into biodiesel production mechanisms[J]. Fuel, 2017,202:98-108. doi: 10.1016/j.fuel.2017.04.022

    14. [14]

      TAVARES S R, WYPYCH F, LEITAO A A. DFT-based calculation of the adsorptions of acetic acid, triacetin, methanol and the alkoxide formation on the surfaces of zinc acetate[J]. Mol Catal, 2017,440:43-49. doi: 10.1016/j.mcat.2017.07.004

    15. [15]

      DA SILVA A C, KUHNEN C A, DA SILVA S C, DALL'OGLIO E L, DE SOUSA JR P T. DFT study of alkaline-catalyzed methanolysis of pentylic acid triglyceride:Gas phase and solvent effects[J]. Fuel, 2013,107:387-393. doi: 10.1016/j.fuel.2012.11.028

    16. [16]

      LI H, NIU S L, LU C M, LI J. Calcium oxide functionalized with strontium as heterogeneous transesterification catalyst for biodiesel production[J]. Fuel, 2016,176:63-71. doi: 10.1016/j.fuel.2016.02.067

    17. [17]

      PERDEW J P, CHEVARY J A, VOSKO S H, JACKSON K A, PEDERSON M R, SINGH D J, FIOLHAIS C. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J]. Phy Rev B, 1992,46(11):6671-6687. doi: 10.1103/PhysRevB.46.6671

    18. [18]

      CAO Yong-yong, JIANG Jun-hui, NI Zhe-ming, XIA Sheng-jie, QIAN Meng-dan, XUE Ji-long. Cluster properties of Au19Pt and selective hydrogenation mechanism of cinnamaldehyde on Au19Pt cluster surface[J]. Chem J Chin Univ, 2016,37(7):1342-1350.  

    19. [19]

      TANG X C, NIU S L, ZHAO S, ZHANG X Y, LI X M, YU H W, LU C M, HAN K H. Synthesis of sulfonated catalyst from bituminous coal to catalyze esterification for biodiesel production with promoted mechanism analysis[J]. J Ind Eng Chem, 2019,77:432-440. doi: 10.1016/j.jiec.2019.05.008

    20. [20]

      DAI W, SHUI Z H, LI K. First-principle investigations of CaO(100) surface and adsorption of H2O on CaO(100)[J]. Comput Theor Chem, 2011,967:185-190. doi: 10.1016/j.comptc.2011.04.016

    21. [21]

      XUE Ji-long, FANG Lei, LUO Wei, MENG Yue, CHEN Tao, XIA Sheng-jie, NI Zhe-ming. Density functional study of water gas shift reaction catalyzed by Cu-Pt-Au ternary alloy[J]. J Fuel Chem Technol, 2019,47(6):688-696. doi: 10.3969/j.issn.0253-2409.2019.06.006

    22. [22]

      QIAN Meng-dan, LUO Wei, Ni Zhe-ming, XIA Shengjie, XUE Ji-long, JIANG Jun-hui. Comparative study on the properties and adsorption of furfural of Pd(111) surface before and after Ru modification[J]. Chem J Chin Univ, 2017,38(9):1611-1618.  

    23. [23]

      ZHAO Bing-kun, CHEN Zhen, WU Yu-long, YANG Ming-de, FENG Wei. A DFT study on the adsorption of methoxy on the Rh(111) surface[J]. J Fuel Chem Technol, 2010,38(3):365-369. doi: 10.3969/j.issn.0253-2409.2010.03.019

    24. [24]

      MAN I C, SORIGA S G, PARVULESCU V. Effect of Ca and Sr in MgO(100) on the activation of methanol and methyl acetate[J]. Catal Today, 2018,306:207-214. doi: 10.1016/j.cattod.2017.03.062

    25. [25]

      LU H T, YU X H, YANG S, YANG H, TU S T. MgO-Li2O catalysts templated by a PDMS-PEO comb-like copolymer for transesterification of vegetable oil to biodiesel[J]. Fuel, 2016,165:215-223. doi: 10.1016/j.fuel.2015.10.072

    26. [26]

      TANG Y, LIU H, REN H M, CHENG Q T, CUI Y, ZHANG J. Development KCl/CaO as a catalyst for biodiesel production by tri-component coupling transesterification[J]. Environ Prog Sustainable Energy, 2019,38(2):647-653. doi: 10.1002/ep.12977

    27. [27]

      GUO F Y, LONG C G, ZHANG J, ZHANG Z, LIU C H, YU K. Adsorption and dissociation of H2O on Al(111) surface by density functional theory calculation[J]. Appl Surf Sci, 2015,324:584-589. doi: 10.1016/j.apsusc.2014.10.041

    28. [28]

      PISTONESI C, JUAN A, FARKAS A P, SOLYMOSI F. DFT study of methanol adsorption and dissociation on β-Mo2C(001)[J]. Surf Sci, 2008,602(13):2206-2211. doi: 10.1016/j.susc.2008.04.039

    29. [29]

      LIU R Q. Adsorption and dissociation of H2O on Au(111) surface:A DFT study[J]. Comput Theor Chem, 2013,1019:141-145. doi: 10.1016/j.comptc.2013.07.009

    30. [30]

      ZHANG Jia-ren. Synthesis of biodiesel from transesterification of rapeseed oil and methanol over solid base[D]. Wuhan: Huazhong University of Science and Technology, 2006. 

    31. [31]

      TENG B T, ZHAO Y, WU F M, WEN X D, CHEN Q P, HUANG W X. A density functional theory study of CF3CH2I adsorption and reaction on Ag(111)[J]. Surf Sci, 2012,606:15-16.  

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    5. [5]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    6. [6]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    14. [14]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    15. [15]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    16. [16]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    17. [17]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    18. [18]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    19. [19]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    20. [20]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

Metrics
  • PDF Downloads(8)
  • Abstract views(971)
  • HTML views(198)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return