Citation: Li Qiang, Liu Jiajia, Li Fangni, Bing Liancheng, Ji Shengfu, Wang Guangjian. Progress in Preparation of Nano-Scale SAPO-34 Molecular Sieves and Their Application in Methanol to Olefins[J]. Chemistry, ;2019, 82(7): 585-589. shu

Progress in Preparation of Nano-Scale SAPO-34 Molecular Sieves and Their Application in Methanol to Olefins

  • Corresponding author: Wang Guangjian, wgjnet@126.com
  • Received Date: 29 January 2019
    Accepted Date: 4 April 2019

  • SAPO-34 molecular sieve is widely used in the reaction of methanol to olefin (MTO). Traditional SAPO-34 molecular sieve is prone to carbon deposition and coking in the catalytic process, which lead to molecular sieve deactivation and short service life. Nano-scale SAPO-34 molecular sieves have smaller crystal size, higher specific surface area, less diffusion limitation, stronger catalyst activity center and anti-carbon deposition ability. In this paper, the preparation methods of nano-scale SAPO-34 were introduced from the perspectives of seed assist, additive addition, double template agent and optimization of crystallization conditions, and the effects of different conditions on the size of nano crystals were further studied and analyzed. Meanwhile, the catalytic performance of different nano-sized SAPO-34 in MTO was discussed. The current research problems and future development directions are put forward.
  • 加载中
    1. [1]

      B M Lok, C A Messina, R L Patton et al. J. Am. Chem. Soc., 1984, 106(20): 6092~6093. 

    2. [2]

      D Chen, K Moljord, A Holmen. Micropor. Mesopor. Mater., 2012, 164(164): 239~250.

    3. [3]

      Y Kawabuchi, H Oka, S Kawano et al. Carbon, 1998, 36(4): 377~382. 

    4. [4]

       

    5. [5]

       

    6. [6]

       

    7. [7]

      None. Appl. Catal., 1984, 10(1): 80.

    8. [8]

      T M Nenoff, S G Thoma, M Kartin. USP: 7041616, 2006. 

    9. [9]

      N Najafi, S Askari, R Halladj et al. Powder Technol., 2014, 254(2): 324~330. 

    10. [10]

       

    11. [11]

      G Y Liu, P Tian, J Z Li et al. Micropor. Mesopor. Mater., 2008, 111(1~3): 143~149. 

    12. [12]

      T Z Wang, X C Lu, Y Yan. Micropor. Mesopor. Mater., 2013, 168: 155~163. 

    13. [13]

       

    14. [14]

      Q M Sun, N Wang, G Q Guo et al. Chem. Commun., 2015, 51(91): 16397~16400. 

    15. [15]

      Q M Sun, N Wang, R S Bai et al. J. Mater. Chem. A, 2016, 4(39): 14978~14982. 

    16. [16]

      G R Chen, Q M Sun, J H Yu. Chem. Commun., 2017, 53(100): 13328~13331. 

    17. [17]

      P F Wang, D X Yang, J Hu et al. Catal. Today, 2013, 212: 62.e1~62.e8. 

    18. [18]

      C Wang, M Yang, P Tian et al. J. Mater. Chem. A, 2015, 3(10): 5608~5616. 

    19. [19]

      B Yang, P B Zhao, J H Ma et al. Chem. Phys. Lett., 2016, 665: 59~63. 

    20. [20]

      J W Zheng, J J Ding, D L Jin et al. Chem. Commun., 2017, 53(45): 6132~6135. 

    21. [21]

      P F Wu, M Yang, W N Zhang et al. Chem. Commun., 2017, 53(36): 4985~4988. 

    22. [22]

      P F Wu, M Yang, L J Sun et al. Chem. Commun., 2018, 54(79): 11160~11163. 

    23. [23]

      C Wang, M Yang, W N Zhang et al. RSC Adv., 2016, 6(53): 47864~47872. 

    24. [24]

      H Yang, X H Liu, G Z Lu et al. Micropor. Mesopor. Mater., 2016, 225: 144~153. 

    25. [25]

      S T Yang, J Y Kim, H J Chae et al. Mater. Res. Bull., 2012, 47(11): 3888~3892. 

    26. [26]

      N Najafi, S Askari, R Halladj. Powder Technol., 2014, 254: 324~330. 

    27. [27]

      H S Pajaie, M Taghizadeh. J. Ind. Eng. Chem., 2015, 24: 59~70. 

    28. [28]

      H S Pajaie, M Taghizadeh. Synth. React. Inorg. Mater., 2016, 46(5): 701~712. 

    29. [29]

      M Li, Y H Wang, L Bai et al. Appl. Catal. A, 2017, 531: 203~211. 

    30. [30]

      D Chen, K Moljord, T Fuglerud et al. Micropor. Mesopor. Mater., 1999, 29(1-2): 191~203. 

  • 加载中
    1. [1]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    3. [3]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    4. [4]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    5. [5]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    6. [6]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    7. [7]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    8. [8]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    9. [9]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    10. [10]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    12. [12]

      Linhui LiuWuwan XiongMingli FuJunliang WuZhenguo LiDaiqi YePeirong Chen . Efficient NOx abatement by passive adsorption over a Pd-SAPO-34 catalyst prepared by solid-state ion exchange. Chinese Chemical Letters, 2024, 35(4): 108870-. doi: 10.1016/j.cclet.2023.108870

    13. [13]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    14. [14]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    15. [15]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    18. [18]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(13)
  • Abstract views(715)
  • HTML views(223)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return