Citation: Wang Yiying, Dong Yuman, Yin Wei, Liu Huanyu, Meng Tao. Progress in the Process Intensification of Whole-Cell Biocatalysis[J]. Chemistry, ;2020, 83(10): 875-882. shu

Progress in the Process Intensification of Whole-Cell Biocatalysis

  • Corresponding author: Meng Tao, taomeng@swjtu.edu.cn
  • Received Date: 21 May 2020
    Accepted Date: 12 June 2020

Figures(5)

  • Cells are the main tool in whole cell biocatalysis. Cell membranes has the disadvantage of resistance to mass transfer, so the efficiency of cell catalysis is much lower than that of free enzyme catalysis. Improving mass transfer to intensify the reaction process is a key issue to be solved in whole cell biocatalysis. Herein, we summarize recent progresses in this field from the perspective of process intensification, which includes improving cell membrane permeability and using microfluidic tools. Moreover, the mechanisms and characteristics of these methods are analyzed. In addition, the challenges and perspectives for further advancing whole cell biocatalysis process intensification are proposed, which provides a reference for the development in this field.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      Dockrey S A B, Doyon T J, Perkins J C, et al. Chem. Biol. Drug Design, 2019, 93(6): 1207-1213. 

    4. [4]

    5. [5]

    6. [6]

      Chen X, Zhou J, Zhang L, et al. Metabol. Eng., 2018, 47(1): 374-382.

    7. [7]

      Gao Q, Piret J M, Adrio J L, et al. J. Ind. Microbiol. Biotechnol., 2003, 30(3): 190-194. 

    8. [8]

      Hossain G S, Shin H D, Li J, et al. RSC Adv., 2016, 6(86): 82676-82684. 

    9. [9]

      Ke C, Yang X, Rao H, et al. Springerplus, 2016, 5(591): 1-8.

    10. [10]

      Zhu D Q, Zhan X B, Wu J R, et al. Biotechnol. Lett., 2017, 39(1): 55-63. 

    11. [11]

      Hama S, Tamalampudi S, Suzuki Y, et al. Appl. Microbiol. Biotechnol., 2008, 81(4): 637-645. 

    12. [12]

      He Y, Chen F, Sun M, et al. Molecules, 2018, 23(3): 691. 

    13. [13]

      Hosche Ak, Buehler B, Schmid A. Biotechnol. Bioeng., 2019, 116(8): 1887-1900. 

    14. [14]

      Yamaguchi T, Nuylert A, Ina A, et al. Sci. Rep., 2018, 6: 26998.

    15. [15]

      Jin G, Bierma T J, Hamaker C G, et al. J. Environ. Sci. Heal. A, 2009, 44(1): 21-28. 

    16. [16]

      Tian K, Li Z. Biochem. Eng. J., 2016, 115(1): 30-37.

    17. [17]

      Yeom S H. Biotechnol. Bioproc. Eng., 2016, 21(2): 274-282. 

    18. [18]

      Chen R R. Appl. Microbiol. Biotechnol., 2007, 74(4): 730-738. 

    19. [19]

      Ni Y, Chen R R. Biotechnol. Bioeng., 2004, 87(6): 804-811. 

    20. [20]

      Rietschel E T, Kirikae T, Schade F U, et al. FASEB J., 1994, 8(2): 217-225. 

    21. [21]

      Ni Y, Zhang B H, Sun Z H. Chin. J. Catal., 2012, 33(4): 681-687.

    22. [22]

      Moon Y M, Yang S Y, Chol T R, et al. Enzyme Microb. Technol., 2019, 127: 58-64. 

    23. [23]

      Cortez D V, Mussatto S I, Roberto I C. Appl. Biochem. Biotechnol., 2016, 180(5): 969-979. 

    24. [24]

      Kumar A, Pundle A. J. Mol. Catal. B, 2009, 57(1-4): 67-71. 

    25. [25]

      Zhang Z J, Yu H L, Imanaka T, et al. Biochem. Eng. J., 2015, 95(15): 71-77.

    26. [26]

      Catania C, Thomas A W, Bazan G C. Chem. Sci., 2016, 7(3): 2023-2029. 

    27. [27]

      Wang B, Fronk S L, Rengert Z D, et al. Chem. Mater., 2018, 30(17): 5836-5840. 

    28. [28]

      Lernia I D, Schiraldi C, Generoso M, et al. Extremophiles, 2002, 6(4): 341-347. 

    29. [29]

      Cortez D V, Roberto I C. New Biotechnol., 2012, 29(2): 192-198. 

    30. [30]

      Lammertink B, Deckers R, Storm G, et al. Int. J. Pharm., 2015, 482(1-2): 92-98. 

    31. [31]

      Dong Y, Su H, Jiang H, et al. Ultrason. Sonochem., 2017, 37: 1-8. 

    32. [32]

      Vaessen E M J, Timmermans R A H, Tempelaars M H, et al. Sci. Rep., 2019, 9: 1-11. 

    33. [33]

      Tryfona T, Bustard M T. J. Biosci. Bioeng., 2008, 105(4): 375-382. 

    34. [34]

      Julsing M K, Schrewe M, Cornelissen S, et al. Appl. Environ. Microbiol., 2012, 78(16): 5724-5733. 

    35. [35]

      Jeon E Y, Song J W, Cha H J, et al. J. Biotechnol., 2018, 281: 161-167. 

    36. [36]

      Park H A, Choi K Y. Biochem. Eng. J., 2020, 156: 107524-107532. 

    37. [37]

      Pagnout C, Sohm B, Razafitianamaharavo A, et al. Sci. Rep., 2019, 9: 1-16. 

    38. [38]

      Wang Z, Wang J L, Ren G, et al. Marine Drugs, 2015, 13(6): 3325-3339. 

    39. [39]

      Losey M W, Schmidt M A, Jensen K F. Ind. Eng. Chem. Res., 2001, 40(12): 2555-2562. 

    40. [40]

      Miro M, Hansen E H. Anal. Chim. Acta, 2007, 600(1-2): 46-57. 

    41. [41]

      Meng S X, Xue L H, Xie C Y, et al. Chem. Eng. J., 2018, 335: 392-400. 

    42. [42]

      Xu B B, Zhang Y L, Wei S, et al. ChemCatChem, 2013, 5(8): 2091-2099. 

    43. [43]

      Znidarsic-Plazl P. J. Flow Chem., 2017, 7(3-4): 111-117.

    44. [44]

      Hoffmann C, Grundtvig I P R, Thrane J, et al. Chem. Eng. J., 2018, 332: 16-23. 

    45. [45]

      Simon D, Obst F, Haefner S, et al. React. Chem. Eng., 2019, 4(1): 67-77. 

    46. [46]

      Zhu Y, Huang Z, Chen Q, et al. Nat. Commun., 2019, 10: 1-9. 

    47. [47]

      Piao Y, Han D J, Azad M R, et al. Biosens. Bioelectron., 2015, 65: 220-225. 

    48. [48]

      Yang X, Wang Y, Bai R, et al. Green Chem., 2019, 21(9): 2229-2233. 

    49. [49]

      Sun H, Zheng H, Tang Q, et al. ACS Appl. Mater. Interf., 2019, 11(40): 37313-37321. 

    50. [50]

      Stojkovic G, Znidarsic-Plazl P. Acta Chim. Slov., 2010, 57(1): 144-149.

    51. [51]

      Stojkovic G, Znidarsic-Plazl P. Proc. Biochem., 2012, 47(7): 1102-1107. 

    52. [52]

      Stojkovic G, Krivec M, Vesel A, et al. Appl. Surf. Sci., 2014, 320: 810-817. 

    53. [53]

      Milozic N, Stojkovic G, Vogel A, et al. New Biotechnol., 2018, 47(25): 18-24.

    54. [54]

      Liu L S, Kost J, Yan F, et al. Polymers, 2012, 4(2): 997-1011. 

    55. [55]

      Zhang J, Yang Z, Li C, et al. Tissue Eng. A, 2013, 19(19-20): 2166-2175. 

    56. [56]

      Menegatti T, Znidarsic-Plazl P. Micromachines, 2019, 10(12): 1-12.

    57. [57]

      Rosche B, Li X Z, Hauer B, et al. Trends Biotechnol., 2009, 27(11): 636-643. 

    58. [58]

      Halan B, Buehler K, Schmid A. Trends Biotechnol., 2012, 30(9): 453-465. 

    59. [59]

      Karande R, Debor L, Salamanca D, et al. Biotechnol. Bioeng., 2016, 113(1): 52-61. 

    60. [60]

      Willrodt C, Halan B, Karthaus L, et al. Biotechnol. Bioeng., 2017, 114(2): 281-290. 

    61. [61]

      Halan B, Karande R, Buehler K, et al. J. Flow Chem., 2016, 6(1): 39-42. 

    62. [62]

      Gross R, Lang K, Buehler K, et al. Biotechnol. Bioeng., 2010, 105(4): 705-717.

    63. [63]

      Zhu C T, Mei Y Y, Zhu L L, et al. Int. J. Mol. Sci., 2018, 19(9): 1-13.

    64. [64]

      Hoschek A, Heuschkel I, Schmid A, et al. Bioresource Technol., 2019, 282: 171-178. 

    65. [65]

      Roellig R, Plikat C, Ansorge-Schumacher M B. Angew. Chem. Int. Ed., 2019, 58(37): 12960-12963. 

    66. [66]

      Zhao Q, Ansorge-Schumacher M B, Haag R, et al. Bioresource Technol., 2020, 295: 122221. 

  • 加载中
    1. [1]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    2. [2]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    3. [3]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    5. [5]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    6. [6]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    7. [7]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    8. [8]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    9. [9]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    10. [10]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    13. [13]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    14. [14]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    15. [15]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    16. [16]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    17. [17]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    18. [18]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    19. [19]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    20. [20]

      Cuiping Yang Huiping Ding Jinpeng Hou Kai Li Weiliang Tian . Reform and Exploration of “Comprehensive and Precise Process” Assessment in Chemical Engineering Principle Experimental Course. University Chemistry, 2024, 39(3): 178-190. doi: 10.3866/PKU.DXHX202309087

Metrics
  • PDF Downloads(225)
  • Abstract views(6098)
  • HTML views(2864)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return