Citation: Lu Xin, Zhang Haifeng, Li Yan. Research Progress in the Analysis Technology of AHLs in Membrane Bioreactor[J]. Chemistry, ;2017, 80(3): 260-265. shu

Research Progress in the Analysis Technology of AHLs in Membrane Bioreactor

  • Corresponding author: Zhang Haifeng, zhftju@163.com
  • Received Date: 29 June 2016
    Accepted Date: 12 November 2016

Figures(1)

  • Membrane biofouling has still been a major problem in membrane bioreactor (MBR) for wastewater treatment. Recently, the quorum quenching technology based on quorum sensing might been an innovative and effective strategy for controlling membrane biofouling. And thus, the recognition and analysis for the signal molecules would play a key role in the application of quorum quenching in dealing with membrane biofouling, which will provide a better understanding of the mechanism of quorum quenching technology in MBR. This paper clarified the main N-acyl homoserine lactones (AHLs) and summarized analytical methods in terms of qualitative and quantitative perspectives, respectively. The mechanism of quorum sensing and AHLs in activated sludge was introduced in details. Further, the qualitative and quantitative analysis methods of AHLs were summarized, and finally, the applications of recognition and analytical technology with respect to AHLs were proposed in MBR.
  • 加载中
    1. [1]

       

    2. [2]

      L Malaeb, P Le-Clech, J S Vrouwenvelder et al. Water Res., 2013, 47(15):5447-5463. 

    3. [3]

      H Oh, K Yeon, C Yang et al. Environ. Sci. Technol., 2012, 46(9):4877-4884. 

    4. [4]

       

    5. [5]

      J Kim, D Choi, K Yeon et al. Environ. Sci. Technol., 2011, 45(4):1601-1607. 

    6. [6]

      H Lin, M Zhang, F Wang et al. J. Membr. Sci., 2014, 460(9):110-125.

    7. [7]

    8. [8]

      M F Siddiqui, M Rzechowicz, W Harvey et al. J. Water Proce. Eng., 2015, 7:112-122. 

    9. [9]

      W Liu, W Cai, A Ma et al. J. Power Sources, 2015, 284:56-59. 

    10. [10]

      V C Kalia, P Kumar, S K T Pandian et al. Springer Handb. Mar. Biotechnol., 2015:431-439.

    11. [11]

      Y Xiong, Y Liu. Microb. Biotechnol., 2010, 86(3):825-837. 

    12. [12]

      C Solano, M Echeverz, I Lasa. Curr. Opin. Microbiol., 2014, 18(4):96-104.

    13. [13]

      S Brameyer, H B Bode, R Heermann. Trends Microbiol., 2015, 23(9):521-523. 

    14. [14]

      T Praneenararat, T M J Beary, A S Breitbach et al. Bioorg. Med. Chem. Lett., 2011, 21(17):5054-5057. 

    15. [15]

      J Huang, Y Shi, G Zeng et al. Chemosphere, 2016, 157:137-151. 

    16. [16]

      T R I Cataldi, G Bianco, L Palazzo et al. Anal. Biochem., 2007, 361(2):226-235. 

    17. [17]

      B Lee, K M Yeon, J Shim et al. Biomacromolecules, 2014, 15(4):1153-1159. 

    18. [18]

      S Swift, M J Lynch, L Fish et al. Infect. Immun., 1999, 67(10):5192-5199.

    19. [19]

      S Y Park, H O Kang, H S Jang et al. Appl. Environ. Microb., 2005, 71(5):2632-2641. 

    20. [20]

      V Thiel, B Kunze, P Verma et al. ChemBioChem, 2009, 10(11):1861-1868. 

    21. [21]

      E O Buton, H W Read, M C Pellitteri et al. Appl. Environ. Microb., 2005, 71(8):4906-4909 

    22. [22]

      S Xia, L Zhou, Z Zhang et al. J. Environ. Sci., 2012, 24(12):2035-2040. 

    23. [23]

      T Defoirdt, N Boon, P Bossier et al. Aquaculture, 2004, 240(1-4):69-88. 

    24. [24]

      D Jahangir, H S Oh, S R Kim et al. J. Membr. Sci., 2012, 411-412(9):130-136.

    25. [25]

      J Lv, Y Wang, C Zhong et al. Bioresource Technol., 2014, 152(1):53-58.

    26. [26]

      L Steindler, V Venturi. FEMS, 2007, 266(1):1-9. 

    27. [27]

      T T Ren, X Y Li, H Q Yu. Bioresource Technol., 2013, 129(2):655-658.

    28. [28]

      Y Huang, Y Zeng, Z Yu et al. Bioresource Technol., 2013, 148(7):311-316. 

    29. [29]

      T Maqbool, S J Khan, H Waheed et al. J. Membr. Sci., 2015, 483:75-83. 

    30. [30]

      S Y Lim, S Kim, K M Yeon et al. Desalination, 2012, 287(3):209-215.

    31. [31]

      M F Siddiqui, M Sakinah, L Singh et al. J. Biotechnol., 2012, 161(3):190-197. 

    32. [32]

      A Kumari, P Pasini, S Daunert. Anal. Bioanal. Chem., 2008, 391(5):1619-1627. 

    33. [33]

      S R Kim, H S Oh, S J Jo et al. Environ. Sci. Technnol., 2013, 47(2):836-842. 

    34. [34]

      K M Yeon, W S Cheong, H S Oh et al. Environ. Sci. Technol., 2009, 43(2):380-385. 

    35. [35]

      H Waheed, I Hashmi, S J Khan et al. Int. Biodeter. Biodegr., 2015, 113:66-73

    36. [36]

      K H Nealson, T Platt, J W Hastings. J. Bacterial., 1970, 104(1):313-322.

    37. [37]

      Q Q Zhan, K P Ye, H H W et al. LWT-Food Sci. Technol., 2014, 57(1):230-235. 

    38. [38]

      N A Weerasekara, K H Choo, C H Lee. Water Res., 2014, 67:1-10. 

    39. [39]

      H S Oh, S R Kim, W S Cheong et al. Appl. Microbiol. Biotechnol., 2013, 97(23):10223-10231 

    40. [40]

      Y Li, W Hao, J Lv et al. Bioresource Technol., 2014, 159(5):305-310.

    41. [41]

      S R Kim, K B Lee, J E Kim et al. J. Membr. Sci., 2015, 473:109-117. 

    42. [42]

      J Charlesworth, O Kimyon, M Manefield et al. J. Microb. Meth., 2015, 118:164-167. 

    43. [43]

      J A Soares, B M Ahmer. Curr. Opin. Microbiol., 2011, 14(2):188-193. 

    44. [44]

       

    45. [45]

       

    46. [46]

       

    47. [47]

      X Li, A Fekete, M Englmann et al. J. Chromatogr. A, 2006, 1134(1-2):186-193. 

    48. [48]

      M Englmann, A Fekete, C Kuttler et al. J. Chromatogr. A, 2007, 1160(1-2):184-193. 

    49. [49]

       

    50. [50]

      L Katebian, E Gomez, L Skillman et al. Desalination, 2016, 393:135-143. 

  • 加载中
    1. [1]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    3. [3]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    4. [4]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    5. [5]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    6. [6]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    7. [7]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    8. [8]

      Tianqi Bai Kun Huang Fachen Liu Ruochen Shi Wencai Ren Songfeng Pei Peng Gao Zhongfan Liu . 石墨烯厚膜热扩散系数与微观结构的关系. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-. doi: 10.3866/PKU.WHXB202404024

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Jiahao Lu Xin Ming Yingjun Liu Yuanyuan Hao Peijuan Zhang Songhan Shi Yi Mao Yue Yu Shengying Cai Zhen Xu Chao Gao . 基于稳态电热法的石墨烯膜导热系数的精确可靠测量. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-. doi: 10.1016/j.actphy.2025.100045

    11. [11]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    12. [12]

      Changjun You Chunchun Wang Mingjie Cai Yanping Liu Baikang Zhu Shijie Li . 引入内建电场强化BiOBr/C3N5 S型异质结中光载流子分离以实现高效催化降解微污染物. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-. doi: 10.3866/PKU.WHXB202407014

    13. [13]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    14. [14]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    15. [15]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    16. [16]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    17. [17]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    18. [18]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    19. [19]

      Meiqing Yang Lu Wang Haozi Lu Yaocheng Yang Song Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 100018-. doi: 10.3866/PKU.WHXB202310046

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(9)
  • Abstract views(1180)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return