Citation: ZHANG Zhuo, XIE Feng, ZHENG Yi, CHENG Huan, WANG Qi. Coke microcrystalline texture and its effect on coke reactivity[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 406-412. shu

Coke microcrystalline texture and its effect on coke reactivity

  • Corresponding author: WANG Qi, wangqi8822@sina.com
  • Received Date: 19 November 2017
    Revised Date: 25 January 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (U1361212)the National Natural Science Foundation of China U1361212

Figures(6)

  • The coke microcrystalline texture was studied by a high resolution transmission electron microscopy combined with digital image analytical technique (HRTEM-DI). The length, inclination angle and curvature characterization parameters of coke microcrystalline texture may be used to express the size of coke microcrystal, the order degree of microcrystalline lamellar and the order degree of microcrystalline stacking. The developed crystallographic index which is used to characterize the size and order degree could better reflect the effect of coke crystallinity on the coke reactivity.
  • 加载中
    1. [1]

      DUVAL B, GUET J M, RICHARD J R, ROUZAUD J N. Coke properties and their microtexture. Part Ⅲ:First results about relationship between microtexture and reactivity of some cokes[J]. Fuel Process Technol, 1988,20:163-175. doi: 10.1016/0378-3820(88)90017-3

    2. [2]

      LU L, SAHAJWAILA V, HARRIS D. Coal char reactivity and structural evolution during combustion-Factors influencing blast furnace pulverized coal injection operation[J]. Metall Mater Trans B, 2002,43:811-820.  

    3. [3]

      WANG Mei-qiang, GUO Xing-qi, LU Yun-juan. Study of relationship between coke structures and its quality[J]. Res Iron Steel, 1995,87(6):39-45.  

    4. [4]

      KANG Xi-dong, HU Shan-ting, PAN Zhi-gui, PAN Yin-miao, WANG Ling-zhi. Influence of coal metamorphic degree on texture and structure of coke[J]. J Changchun Univ Earth Sci, 1997,27(3):323-326.  

    5. [5]

      DAI Zhong-chu. Study on the relationship between maceral group and optical texture, coke quality[J]. J Wuhan Iron Steel Univ, 1993,16(2):139-145.  

    6. [6]

      CHEN Ai-guo, ZHOU Shu-yi. Study on the relationship between maceral of coal and optical texture of its coke[J]. Coal Chemical Industry, 1995(4):38-41, 48.  

    7. [7]

      HUANG Ying-hua, REN De-qing, HIROMI Yamashita, AKIRA Tomita. Thermal nature of macerals and coke characteristic[J]. Fuel Chem Proc, 1994,25(3):121-124.  

    8. [8]

      WU Xiao-yeng. Study of XRD on the crystallite structure characteristics of high temperature coke of coals[J]. J XI'an Min Inst, 1999,19(2):158-160.  

    9. [9]

      SHARMA A, KYOTANI T, TOMITA A. A new quantitative approach for microstructural analysis of coal char using HRTEM images[J]. Fuel, 1999,78:1203-1212. doi: 10.1016/S0016-2361(99)00046-0

    10. [10]

      HONG-SHIG S, ROBERT H H, NANCY Y C, YA NG. A methodology for analysis of 002 lattice fringe images and its application to combustion-derived carbons[J]. Carbon, 2002,38:29-45.  

    11. [11]

      PUSZ, KRZESIŃSKA, Smedowski. Changes in a coke structure due to reaction with carbon dioxide[J]. Int J Coal Geol, 2010,81:287-292. doi: 10.1016/j.coal.2009.07.013

    12. [12]

      ANDRIANI G F, WALSH N. Physical properties and textural parameters of calcarenitic rocks:Qualitative and quantitative evaluations[J]. Eng Geol, 2002,67:5-15. doi: 10.1016/S0013-7952(02)00106-0

    13. [13]

      SMEDOWSKI Y, KRZESI ŃSKA M, KWAŚNY W, KOZANECKI M. Development of ordered structures in the high-temperature(HT) cokes from binary and ternary coal blends studied by meansof X-ray diffraction and raman spectroscopy 2011 American chemical society[J]. Energy Fuels, 2011,25:3142-3149. doi: 10.1021/ef200609t

    14. [14]

      FANG Yong-zheng, CAO Yin-ping, JIN Ming-lin, YANG Jun-he, QIAN Zhan-fen. Effect of anthracite in coal blend on micro-crystal and pore structure of coke[J]. Iron Steel, 2006,41(10):16-18.  

    15. [15]

      ROUZAUD J R, VOGT D, OBERLIN A. Coke properties and their microtexture Part Ⅰ:Microtextural analysis:A guide for cokemaking[J]. Fuel Process Technol, 1998,20:143-154.  

    16. [16]

      ROUZAUD J N, JEHLICKA J, FAUGERE A M, PIS J J, ALVAREZ R. Influence of the oxidation of coals of different rank on coke microtexture and other relevant properties[J]. Fuel, 1994,73:810-815. doi: 10.1016/0016-2361(94)90272-0

    17. [17]

      FAN Xiao-lei, YANG Fan, ZHANG Wei, ZHOU Zhi-jie, WANG Fu-chen, YU Zun-hong. Variation of the crysta lline structure of coal char during pyrolysis and its effect on gasification reactivity[J]. J Fuel Chem Technol, 2006,34(4):395-398.  

    18. [18]

      HU De-sheng. Crystallite structure characteristics of coke[J]. Iron Steel, 2006,41(11):10-12. doi: 10.3321/j.issn:0449-749X.2006.11.003

    19. [19]

      ZHANG Shou-yu, LÜ Jun-fu, WANG Wen-xuan, ZHU Ting-yu, LI Yong, YUE Guang-xi. Effect of heat treatment on the reactivity and microstructure of coal-char[J]. J Fuel Chem Technol, 2004,32(6):673-678.  

    20. [20]

      YANG J H, CHENG S H. Quantitative analysis of microstructure of carbon materials by HRTEM Trans[J]. Nonferrous Met SOC China, 2006,16:796-803. doi: 10.1016/S1003-6326(06)60303-8

    21. [21]

      DOBB M G, GUO H, JOHNSON D J. Image analysis of lattice imperfections in carbon fibers[J]. Carbon, 1995,33:1115-1120. doi: 10.1016/0008-6223(95)00060-Q

  • 加载中
    1. [1]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    2. [2]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    3. [3]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    4. [4]

      Yuting Zhang Zhiqian Wang . Methods and Case Studies for In-Depth Learning of the Aldol Reaction Based on Its Reversible Nature. University Chemistry, 2024, 39(7): 377-380. doi: 10.3866/PKU.DXHX202311037

    5. [5]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    6. [6]

      Renxiao Liang Zhe Zhong Zhangling Jin Lijuan Shi Yixia Jia . A Palladium/Chiral Phosphoric Acid Relay Catalysis for the One-Pot Three-Step Synthesis of Chiral Tetrahydroquinoline. University Chemistry, 2024, 39(5): 209-217. doi: 10.3866/PKU.DXHX202311024

    7. [7]

      Jiaqi ANYunle LIUJianxuan SHANGYan GUOCe LIUFanlong ZENGAnyang LIWenyuan WANG . Reactivity of extremely bulky silylaminogermylene chloride and bonding analysis of a cubic tetragermylene. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1511-1518. doi: 10.11862/CJIC.20240072

    8. [8]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    9. [9]

      Zihao Guo Shichen Ma Kin Shing Chan . 烯烃环化反应中6电子试剂的等瓣相似性和等电子关系. University Chemistry, 2025, 40(6): 160-166. doi: 10.12461/PKU.DXHX202408038

    10. [10]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    11. [11]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    12. [12]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    13. [13]

      Simin Fang Hong Wu Wei Liu Wei Wei Hongyan Feng Wan Li . Construction and Application of Teaching Resources for Inorganic and Analytical Chemistry Experimental Course in the Context of Digital Empowerment. University Chemistry, 2024, 39(10): 156-163. doi: 10.3866/PKU.DXHX202402053

    14. [14]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    15. [15]

      Wenhui Li Changshuo Zhu Xinyu Cui Chenfei Zhao Lina Qiu Yan Li Chuandong Wu Min Yang Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062

    16. [16]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    17. [17]

      Weizhi Wang Jieling Qin Jie Cao . 仪器分析全英语课程设置的必要性与思政教育实践融合. University Chemistry, 2025, 40(8): 117-123. doi: 10.12461/PKU.DXHX202410067

    18. [18]

      Yan Xiao Shuling Li Yifan Li Jianing Fan Linlin Shi . Discovering the Beauty of Life: Adding Some “Ingredients” to Crystals. University Chemistry, 2024, 39(6): 366-372. doi: 10.3866/PKU.DXHX202312025

    19. [19]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    20. [20]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

Metrics
  • PDF Downloads(8)
  • Abstract views(1157)
  • HTML views(191)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return