Effect of Ag on deNOx performance of SCR-C3H6 over Fe/Al-PILC catalysts
- Corresponding author: SU Ya-xin, suyx@dhu.edu.cn
Citation:
ZHANG Xian-wei, SU Ya-xin, CHENG Jiang-hao, LIN Rui, WEN Ni-ni, DENG Wen-yi, ZHOU Hao. Effect of Ag on deNOx performance of SCR-C3H6 over Fe/Al-PILC catalysts[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(11): 1368-1378.
MORE P M. Effect of active component addition and support modification on catalytic activity of Ag/Al2O3, for the selective catalytic reduction of NOx by hydrocarbon-A review[J]. J Environ Manage, 2017,188:43-48. doi: 10.1016/j.jenvman.2016.11.077
THOMAS C. On an additional promoting role of hydrogen in the H2-assisted C3H6-SCR of NOx on Ag/Al2O3:A lowering of the temperature of formation-decomposition of the organo-NOx intermediates[J]. Appl Catal B:Environ, 2015,162:454-462. doi: 10.1016/j.apcatb.2014.07.021
IWAMOTO M, YAHIRO H, YU U Y. Selective reduction of NO by lower hydrocarbons in the presence of O2 and SO2 over copper ion-exchanged zeolites[J]. Catal, 1990,32(6):430-433.
BURCH R. Knowledge and know-how in emission control for mobile applications[J]. Catal Rev, 2004,46(3/4):271-334.
LI Qian-cheng, SU Ya-xin, DONG Shi-lin, YUAN Min-hao, ZHOU Hao, DENG Wen-yi. Fe-PILC for selective catalytic reduction of NO by propene under lean-burn conditions[J]. J Fuel Chem Technol, 2018,46(10):99-107.
QIAN Wen-yan, SU Ya-xin, YANG Xi, YUAN Min-hao, DENG Wen-yi, ZHAO Bing-tao. Experimental study on selective catalytic reduction of NO with propene over iron based catalysts supported on aluminum pillared clays[J]. J Fuel Chem Technol, 2017,45(12):1499-1507. doi: 10.3969/j.issn.0253-2409.2017.12.012
DONG Shi-lin, SU Ya-xin, LIU Xin, LI Qian-cheng, YUAN Min-hao, ZHOU Hao, DENG Wen-yi. Experimental study on selective catalytic reduction of NO by C3H6 over Fe/Ti-PILC catalysts[J]. J Fuel Chem Technol, 2018,46(10):1231-1239. doi: 10.3969/j.issn.0253-2409.2018.10.011
ZHOU H, SU Y X, LIAO W Y, ZHONG F C. NO reduction by propane over monolithic cordierite-based Fe/Al2O3 catalyst:Reaction mechanism and effect of H2O/SO2[J]. Fuel, 2016,182:352-360. doi: 10.1016/j.fuel.2016.05.116
YANG Xi, SU Ya-xin, QIAN Wen-yan, YUAN Min-hao, ZHOU Hou, DENG Wen-yi, ZHAO Bing-tao. Experimental study on selective catalytic reduction of NO by C3H6 over Fe-Ag/Al2O3 catalysts[J]. J Fuel Chem Technol, 2017,45(11):1365-1375. doi: 10.3969/j.issn.0253-2409.2017.11.012
MIYADERA T. Alumina-supported silver catalysts for the selective reduction of nitric oxide with propene and oxygen-containing organic compounds[J]. Appl Catal B:Environ, 1993,2(2/3):199-205.
KANNISTO H, INGELSTEN H H, SKOGLUNDH M. Ag-Al2O3 catalysts for lean NOx reduction-Influence of preparation method and reductant[J]. J Mol Catal, 2009,302(1/2):86-96. doi: 10.1016/j.molcata.2008.12.003
SADOKHINA N A, PROKHOROVA A F, KVON R I, MASHKOVSKII I S, BRAGINA G O, BAEVA G N, BUKHTIYAROV V I, STAKHEEV A Y. Dependence of the catalytic activity of Ag/Al2O3 on the silver concentration in the selective reduction of NOx with n-hexane in the presence of H2[J]. Kinet Catal, 2012,53(1):107-116. doi: 10.1134/S0023158412010090
ZHANG R D, KALIAGUINE S. Lean reduction of NO by C3H6 over Ag/alumina derived from Al2O3, AlOOH and Al(OH)3[J]. Appl Catal B:Environ, 2008,78(3/4):275-287.
CHAIEB T, DELANNOY L, LOUIS C, THOMAS C. On the origin of the optimum loading of Ag on Al2O3 in the C3H6-SCR of NOx[J]. Appl Catal B:Environ, 2013,142/143:780-784. doi: 10.1016/j.apcatb.2013.06.010
SATOKAWA S. Enhancing the NO/C3H8/O2 reaction by using H2 over Ag/Al2O3 catalysts under lean-exhaust conditions[J]. Chem Lett, 2000,29(3):294-295.
SATOKAWA S, SHIBATA J, SHIMIZU K, ATSUSHI S, HATTORI T. Promotion effect of H2 on the low temperature activity of the selective reduction of NO by light hydrocarbons over Ag/Al2O3[J]. Appl Catal B:Environ, 2003,42(2):179-186. doi: 10.1016/S0926-3373(02)00231-X
SHIMIZU K, SHIBATA J, SATSUMA A. Kinetic and in situ infrared studies on SCR of NO with propane by silver-alumina catalyst:Role of H2 on O2 activation and retardation of nitrate poisoning[J]. J Catal, 2006,239(2):402-409. doi: 10.1016/j.jcat.2006.02.011
KIM P S, KIM M K, CHO B K, NAM I S, OH S H. Effect of H2 on deNOx performance of SCR-HC over Ag/Al2O3:Morphological, chemical, and kinetic changes[J]. J Catal, 2013,301:65-76. doi: 10.1016/j.jcat.2013.01.026
CHAIEB T, DELANNOY L, COSTENTIN G, LOUIS C, CASALE S, CHANTRY R L, LI Z Y, THOMAS C. Insights into the influence of the Ag loading on Al2O3 in theH2-assisted C3H6-SCR of NOx[J]. Appl Catal B:Environ, 2014,156/157:192-201. doi: 10.1016/j.apcatb.2014.03.025
THOMAS C. On an additional promoting role of hydrogen in the H2-assisted C3H6-SCR of NOx on Ag/Al2O3:A lowering of the temperature of formation-decomposition of the organo-NOx intermediates?[J]. Appl Catal B:Environ, 2015,162:454-462. doi: 10.1016/j.apcatb.2014.07.021
XU G Y, MA J Z, HE G Z, YU Y B, HE H. An alumina-supported silver catalyst with high water tolerance for H2 assisted C3H6-SCR of NOx[J]. Appl Catal B:Environ, 2017,207:60-71. doi: 10.1016/j.apcatb.2017.02.001
XU G Y, MA J Z, WANG L, XIE W, LIU J J, YU YU B, HE H. Insight into the origin of sulfur tolerance of Ag/Al2O3 in the H2-C3H6-SCR of NOx[J]. Appl Catal B:Environ, 2019,244:909-918. doi: 10.1016/j.apcatb.2018.11.050
MORE P M, DONGARE M K, UMBARKAR S B, GRANGER P, DUJARDIN C. Bimetallic Au-Ag/Al2O3 as efficient catalysts for the hydrocarbon selective reduction of NOx from lean burn engine exhaust[J]. Catal Today, 2018,306:23-31. doi: 10.1016/j.cattod.2016.12.002
MORE P M, NGUYEN D L, GRANGER P, DUJARDIN C, DONGARE M K, UMBARKAR S B. Activation by pretreatment of Ag-Au/Al2O3 bimetallic catalyst to improve low temperature SCR-HC of NOx for lean burn engine exhaust[J]. Appl Catal B:Environ, 2015,174/175:145-156. doi: 10.1016/j.apcatb.2015.02.035
MORE P M, JAGTAP N, KULAL A B, DONGARE M K, UMBARKER S B. Magnesia doped Ag/Al2O3-sulfur tolerant catalyst for low temperature SCR-HC of NOx[J]. Appl Catal B:Environ, 2014,144:408-415. doi: 10.1016/j.apcatb.2013.07.044
ARVE K, KLINGSTEDT F, ERÄNEN K, LINDFORS L E, MURZIN D Y. Engineering SCR-HC:Improved low temperature performance through a cascade concept[J]. Catal Lett, 2005,105(3/4):133-138.
VALANIDOU L, THEOLOGIDES C, ZORPAS A A, SAWA P G, COSTA C N. A novel highly selective and stable Ag/MgO-CeO2-Al2O3 catalyst for the low-temperature ethanol-SCR of NO[J]. Appl Catal B:Environ, 2011,107(1/2):164-176.
YAO S, HUA P, ZHANG Y, WEI L. Promotion of MgO addition on SO2 tolerance of Ag/Al2O3 for selective catalytic reduction of NOx with methane at low temperature[J]. Catal Commun, 2008,9(5):796-800. doi: 10.1016/j.catcom.2007.09.002
FAN C, XIANG J, SHENG S, WANG P Y, SONG H, SUN L S. Ag modified Mn-Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature[J]. Fuel Process Technol, 2015,135:66-72. doi: 10.1016/j.fuproc.2014.10.021
PANAHI P N, NIAEI A, SALARI D, MOUSAVI S M. Selective catalytic reduction of NO over M-Ag/ZSM-5 bimetallic nanocatalysts (M=Mn, Fe and Ni). Physicochemical properties and catalytic performance[J]. Kinet Catal, 2015,56(5):617-624. doi: 10.1134/S0023158415050146
YUAN M H, DENG W Y, DONG S L, LI Q C, ZHAO B T, SU Y X. Montmorillonite based porous clay heterostructures modified with Fe as catalysts for selective catalytic reduction of NO with propylene[J]. Chem Eng J, 2018,353:839-848. doi: 10.1016/j.cej.2018.07.201
SHI Xin-yu, CHU Wei. Effect of support and Ag loading on the performance of silver-based catalysts for selective catalytic reduction of NO by C3H6[J]. Nat Gas Chem, 2009,34(4):47-52. doi: 10.3969/j.issn.1001-9219.2009.04.012
ZHU Bin, FEI Zhao-yang, CHEN Xian, TANG Ji-hai, CUI Mi-fen, QIAO Xu. Synergetic effect of Cu-Fe composite oxides supported on Al-PILC for SCR of NO with NH3[J]. J Fuel Chem Technol, 2014,42(9):1102-1110. doi: 10.3969/j.issn.0253-2409.2014.09.011
HE H, ZHANG C B, YU Y B. A comparative study of Ag/Al2O3 and Cu/Al2O3 catalysts for the selective catalytic reduction of NO by C3H6[J]. Catal Today, 2004,90(3):191-197.
BIN L I, SHIJIE L I, WANG Y X, NENG L I, LIU X Y, LIN B X. Study on antimony oxide self-assembled inside HZSM-5[J]. J Solid State Chem, 2005,178(4):1030-1037. doi: 10.1016/j.jssc.2004.12.023
QI G S, YANG R T, CHANG R. MnOx-CeO mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B:Environ, 2004,51(2):93-106. doi: 10.1016/j.apcatb.2004.01.023
ZIELIŃSKI J, ZGLINICKA I, ZNAK L, KASZKUR Z. Reduction of Fe2O3 with hydrogen[J]. Appl Catal A:Gen, 2010,381(1):191-196.
CAO F, XIANG J, SU S, WANG P Y, HU S, SUN L S. Ag modified Mn-Ce/γ-Al2O3 catalyst for selective catalytic reduction of NO with NH3 at low-temperature[J]. Fuel Process Technol, 2015,135:66-72. doi: 10.1016/j.fuproc.2014.10.021
SATO K, YOSHINARI T, KINTAICHI Y, HANEDA H. Remarkable promoting effect of rhodium on the catalytic performance of Ag/AlO for the selective reduction of NO with decane[J]. Appl Catal B:Environ, 2003,44(1):67-78. doi: 10.1016/S0926-3373(03)00020-1
SPARKS D E, PATTERSON P M, JACOBS G, CROCKER M, CHANEY J A. Supported bismuth oxide catalysts for the selective reduction of NO with propene in lean conditions[J]. Catal Commun, 2006,7(3):122-126. doi: 10.1016/j.catcom.2005.09.004
IGLESIAS-JUEZ A, HUNGRÍA A B, MARTÍNEZ-ARIAS A, FUERTE A, FERNÁNDEZ-GARCIÍA , M , ANDERSON J A, CONESA J C, SORIA J. Nature and catalytic role of active silver species in the lean NOx reduction with C3H6 in the presence of water[J]. J Catal, 2003,217(2):310-323. doi: 10.1016/S0021-9517(03)00055-1
XU G Y, YU Y B, HE H. Silver valence state determines the water tolerance of Ag/Al2O3 for the H2-C3H6-SCR of NOx[J]. J Phys Chem C, 2017,122(1):670-680.
SAZAMA P, ČAPEK L, DROBNÁ H, SOBALÍK Z, DĚDEČEK J, ARVE K, WICHTERLOVÁ B. Enhancement of decane-SCR-NOx over Ag/alumina by hydrogen. Reaction kinetics and in situ FTIR and UV-vis study[J]. J Catal, 2005,232(2):302-317. doi: 10.1016/j.jcat.2005.03.013
LI Yi. Mechanistic and practical studies of Ag species on the selective catalytic reduction of NOx over Ag/Al2O3[D]. Beijing: Graduate University, Chinese Academy of Sciences, 2010.
CHMIELARZ L, KUŚTROWSKI P, PIWOWARSKA Z, DUDEK B, GIL B, MICHALIK M. Montmorillonite, vermiculite and saponite based porous clay heterostructures modified with transition metals as catalysts for the DeNOx process[J]. Appl Catal B:Environ, 2009,88(3):331-340.
CHENG W U, YAN K, FEI G, YONG W U, YINONG L U, WANG J, LIN D. Synthesis, characterization and catalytic performance for phenol hydroxylation of Fe-MCM41 with high iron content[J]. Microporous Mesoporous Mater, 2008,113(1):163-170.
FIERRO G, MORETTI G, FERRARIS G, ANDREOZZI G B. A Mössbauer and structural investigation of Fe-ZSM-5 catalysts:Influence of Fe oxide nanoparticles size on the catalytic behaviour for the NO-SCR by C3H8[J]. Appl Catal B:Environ, 2011,102(1/2):215-223. doi: 10.1016/j.apcatb.2010.12.001
JODAEI A, SALARI D, NIAEI A, KHATAMIAN M, CAYLAK N. Preparation of Ag-M (M:Fe, Co and Mn)-ZSM-5 bimetal catalysts with high performance for catalytic oxidation of ethyl acetate[J]. Environ Technol, 2011,32(3/4):395-406. doi: 10.1080/09593330.2010.501088
LI W, GANG L, JIN C Z, XIN L, WANG J H. One-step synthesis of nanorod-aggregated functional hierarchical iron-containing MFI zeolite microspheres[J]. J Mater Chem A, 2015,3(28):14786-14793. doi: 10.1039/C5TA02662H
HOFLUND G B, HAZOS Z F, SALAITA G N. Surface characterization study of Ag, AgO, and Ag2O using X-ray photoelectron spectroscopy and electron energy-loss spectroscopy[J]. Phys Rev B, 2000,62(16):11126-11133. doi: 10.1103/PhysRevB.62.11126
RICHTER M, LANGPAPE M, KOLF S, GRUBERT G, ECKELT R, RADNIK J, SCHNEIDER M, POHL M M, FRICKE R. Combinatorial preparation and high-throughput catalytic tests of multi-component deNOx catalysts[J]. Appl Catal B:Environ, 2002,36(4):261-277. doi: 10.1016/S0926-3373(01)00290-9
JAGTAP N, UMBARKAR S B, MIQUEL P, GRANGER P, DONGARE M K. Support modification to improve the sulphur tolerance of Ag/Al2O3 for SCR of NOx with propene under lean-burn conditions[J]. Appl Catal B:Environ, 2009,90(3):416-425. doi: 10.1016/j.apcatb.2009.04.001
WILLIAMS M F, FONFÉ B, SIEVERS C. Hydrogenation of tetralin on silica-alumina-supported Pt catalysts. Physicochemical characterization of the catalytic materials[J]. J Catal, 2007,251(2):485-496.
DATKA J, TUREK A M, JEHNG J M, WACHS I E. Acidic properties of supported niobium oxide catalysts:An infrared spectroscopy investigation[J]. J Catal, 1992,135(1):186-199. doi: 10.1016/0021-9517(92)90279-Q
CHMIELARZ L, PIWOWARSKA Z, KUŚTROWSKI P, WEGRZYN A, GIL B, KOWALCZYK A, DUDEK B, DZIEMBAJ R, MICHALIK M. Comparison study of titania pillared interlayered clays and porous clay heterostructures modified with copper and iron as catalysts of the DeNOx process[J]. Appl Clay Sci, 2011,53(2):164-173. doi: 10.1016/j.clay.2010.12.009
PINNAVAIA T J. Intercalated clay catalysts[J]. Science, 1983,220(4595):365-371. doi: 10.1126/science.220.4595.365
WANG Z M, YAMAGUCHI M, GOTO I, KUMAGAI M. Characterization of Ag/Al2O3 de-NOx catalysts by probing surface acidity and basicity of the supporting substrate[J]. Phys Chem Chem Phys, 2000,2(13):3007-3015. doi: 10.1039/b000226g
YUAN D L, LI X Y, ZHAO Q D, ZHAO J J, LIU S M, MOSES T. Effect of surface Lewis acidity on selective catalytic reduction of NO by C3H6 over calcined hydrotalcite[J]. Appl Catal A:Gen, 2013,451:176-183. doi: 10.1016/j.apcata.2012.11.001
SULTANA A, HANEDA M, FUJITANI T, HAMADA H. Influence of Al2O3 support on the activity of Ag/Al2O3 catalysts for SCR of NO with decane[J]. Cata Lett, 2007,114(1/2):96-102. doi: 10.1007/s10562-007-9045-5
Yaping ZHANG , Tongchen WU , Yun ZHENG , Bizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256
Shihui Shi , Haoyu Li , Shaojie Han , Yifan Yao , Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
Peiran ZHAO , Yuqian LIU , Cheng HE , Chunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355
Xilin Zhao , Xingyu Tu , Zongxuan Li , Rui Dong , Bo Jiang , Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106
Jiakun BAI , Ting XU , Lu ZHANG , Jiang PENG , Yuqiang LI , Junhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002
Jun LUO , Baoshu LIU , Yunchang ZHANG , Bingkai WANG , Beibei GUO , Lan SHE , Tianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Junjie Zhang , Yue Wang , Qiuhan Wu , Ruquan Shen , Han Liu , Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084
Baitong Wei , Jinxin Guo , Xigong Liu , Rongxiu Zhu , Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Yinuo Wang , Siran Wang , Yilong Zhao , Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063
Zhongyan Cao , Shengnan Jin , Yuxia Wang , Yiyi Chen , Xianqiang Kong , Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Xuejiao Wang , Suiying Dong , Kezhen Qi , Vadim Popkov , Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005
Xianghai Song , Xiaoying Liu , Zhixiang Ren , Xiang Liu , Mei Wang , Yuanfeng Wu , Weiqiang Zhou , Zhi Zhu , Pengwei Huo . 氮掺杂显著提升BiOBr光催化还原CO2性能研究. Acta Physico-Chimica Sinica, 2025, 41(6): 100055-. doi: 10.1016/j.actphy.2025.100055
(a): NO conversion; (b): C3H6 conversion; (c): N2 selectivity; (d): effect of iron loading φNO=0.05%, φC3H6=0.2%, φO2=1%, N2 balance, GHSV=22000h-1
(a): φNO=0.05%, φC3H6=0.2%, φO2=1%, φSO2=0.02%, N2 balance, GHSV=22000h-1; (b): φNO=0.05%, φC3H6=0.2%, φO2=1%, φH2O=7%, N2 balance, GHSV=22000h-1
a: Fe/Al-PILC; b: 0.4Ag-Fe/Al-PILC; c: 2.1Ag-Fe/Al-PILC; d: 3.3Ag-Fe/Al-PILC
a: 0.4Ag-Fe/Al-PILC; b: 2.1Ag-Fe/Al-PILC; c: 3.3Ag-Fe/Al-PILC; d: Fe/Al-PILC
a: 2.1Ag-Fe/Al-PILC; b: 0.4Ag-Fe/Al-PILC; c: Fe/Al-PILC; d: 3.3Ag-Fe/Al-PILC
a: 0.4Ag-Fe/Al-PILC; b: 2.1Ag-Fe/Al-PILC; c: 3.3Ag-Fe/Al-PILC
a: 0.4Ag-Fe/Al-PILC; b: 2.1Ag-Fe/Al-PILC; c: 3.3Ag-Fe/Al-PILC