Citation: YANG Qing, HAO Qing-lan, YAN Ning-na, ZHAO Ruo-zhu, ZHAO Chen-chen, ZHANG Qing, DOU Bao-juan, BIN Feng. Preparation of CuCe0.75Zr0.25Ox composite by bacterial cellulose promoted sol-gel method and its catalytic performance in the toluene degradation at low temperature[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1401-1408. shu

Preparation of CuCe0.75Zr0.25Ox composite by bacterial cellulose promoted sol-gel method and its catalytic performance in the toluene degradation at low temperature

  • Corresponding author: DOU Bao-juan, bjdou@tust.edu.cn
  • Received Date: 23 June 2017
    Revised Date: 23 August 2017

    Fund Project: the National Natural Science Foundation of China 21307088The project was supported by the National Natural Science Foundation of China (21307088)

Figures(10)

  • Mesoporous CuCe0.75Zr0.25Ox composite was prepared by a simple sol-gel method with environmentally benign bacterial cellulose (BC) as a pore former and characterized by TG/DTG, N2 adsorption-desorption, XRD, H2-TPR, O2-TPD and Raman; its catalytic activity in the degradation of toluene at low temperature was investigated in a fixed-reactor. The results indicated that BC with ultra fine three-dimensional networks and excellent compatibility is beneficial to the formation of gel with nitrate solution, to prepare the mesoporous catalyst. The catalyst performance of CuCe0.75Zr0.25Ox composite is significantly affected by the gel-form and gelling temperature during the preparation process. Over the ACCZ-70 catalyst prepared by alcohol gelling at 70 ℃, the temperature for a complete degradation of toluene (T100) reaches 205 ℃, much lower than those reported in open literature; the excellent activity of ACCZ-70 is ascribed to its high reducibility at low temperature and high concentration of oxygen vacancies (0.81). In addition, adsorption phenomenon was observed in the range of 120-140 ℃ during the toluene degradation over WCCZ catalysts prepared by water gelling.
  • 加载中
    1. [1]

      ZHONG Z M, SHA Q E, ZHENG J Y, YUAN Z B, GAO Z J, OU J M, ZHENG Z Y, LI C, HUANG Z J. Sector-based VOCs emission factors and source profiles for the surface coating industry in the Pearl River Delta region of China[J]. Sci Total Environ, 2017,583(1):19-28.  

    2. [2]

      ZHANG Z X, ZHENG J, SHANGGUAN W F. Low-temperature catalysis for VOCs removal in technology and application:A state-of-the-art review[J]. Catal Today, 2016,264(15):270-278.  

    3. [3]

      KAMIMURA Y, SHIMOMUR M, ENDO A. Simple template-free synthesis of high surface area mesoporous ceria and its new use as a potential adsorbent for carbon dioxide capture[J]. J Colloid Interf Sci, 2014,436(15):52-62.  

    4. [4]

      YE L Q, ZHANG Y L, SONG C C, LI Y Y, JIANG B. A simple sol-gel method to prepare superhydrophilic silica coatings[J]. Mater Lett, 2017,188(1):316-318.  

    5. [5]

      MIN J E, LEE Y J, PARK H G, ZHANG C D, JUN K W. Carbon dioxide reforming of methane on Ni-MgO-Al2O3 catalysts prepared by sol-gel method:Effects of Mg/Al ratios[J]. J Ind Eng Chem, 2015,26(25):375-383.  

    6. [6]

      MARCELLO R D, EDUARDO H M N, WANDER L V. Use of a design-of-experiments approach for preparing ceria-zirconia-alumina samples by sol-gel process[J]. Ceram Int, 2016,42(8):9488-9495. doi: 10.1016/j.ceramint.2016.03.021

    7. [7]

      TANG W X, WU X F, LIU G, LI S D, LI D Y, LI W H, CHEN Y F. Preparation of hierarchical layer-stacking Mn-Ce composite oxide for catalytic total oxidation of VOCs[J]. J Rare Earth, 2015,33(1):62-69. doi: 10.1016/S1002-0721(14)60384-7

    8. [8]

      ZHANG X, WU D F. Ceramic monolith supported Mn-Ce-M ternary mixed-oxide (M=Cu, Ni or Co) catalyst for VOCs catalytic oxidation[J]. Ceram Int, 2016,42(15):16563-16570. doi: 10.1016/j.ceramint.2016.07.076

    9. [9]

      LU H F, KONG X X, HUANG H F, ZHOU Y, CHEN Y F. Cu-Mn-Ce ternary mixed-oxide catalysts for catalytic combustion of toluene[J]. J Environ Sci, 2015,32(1):102-107.  

    10. [10]

      MANMEET S D, JEFFREY M C. Mechanical and structural property analysis of bacterial cellulose composites[J]. Carbohyd Polym, 2016,144(25):447-453.  

    11. [11]

      WANG J Q, LU X K, NG P F, LEE K I, FEI B, XIN J H, WU J Y. Polyethylenimine coated bacterial cellulose nanofiber membrane and application as adsorbent and catalyst[J]. J Colloid Interf Sci, 2015,440(15):32-38.  

    12. [12]

      ZHANG D Y, QI L M. Synthesis of mesoporous titania networks consisting of anatase nanowires by templating of bacterial cellulose membranes[J]. Chem Commun, 2005,21:2735-2737.  

    13. [13]

      ZHANG T, ZHENG Y D, LIU S M, YUE L N, GAO Y, YAO Y. Bacterial cellulose membrane supported three-dimensionally dispersed silver nanoparticles used as membrane electrode for oxygen reduction reaction in phosphate buffered saline[J]. J Electroanal Chem, 2015,750(1):43-48.  

    14. [14]

      ZHOU P P, WANG H H, YANG J Z, TANG J, SUN D P, TANG W H. Bacteria cellulose nanofibers supported palladium(0) nanocomposite and its catalysis evaluation in heck reaction[J]. Ind Eng Chem Res, 2012,51(16):5743-5748. doi: 10.1021/ie300395q

    15. [15]

      YANG J Z, TANG W H, LIU X L, CHAO C, LIU J G, SUN D P. Bacterial cellulose-assisted hydrothermal synthesis and catalytic performance of La2CuO4 nanofiber for methanol steam reforming[J]. Int J Hydrogen Energy, 2013,38(25):10813-10818. doi: 10.1016/j.ijhydene.2013.01.015

    16. [16]

      LIU S S, YAN W N, CAO X C, ZHOU Z F, YANG R Z. Bacterial-cellulose-derived carbon nanofiber-supported CoFe2O4 as efficient electrocatalyst for oxygen reduction and evolution reactions[J]. Int J Hydrogen Energy, 2016,41(11):5351-5360. doi: 10.1016/j.ijhydene.2016.01.121

    17. [17]

      FORESTI M L, VÁZQUEZ A, BOURY B. Applications of bacterial cellulose as precursor of carbon and Composites with metal oxide, metal sulfide and metal nanoparticles:A review of recent advances[J]. Carbohyd Polym, 2017,157(10):447-467.  

    18. [18]

      LI S M, HAO Q L, ZHAO R Z, LIU D L, DUAN H Z, DOU B J. Highly efficient catalytic removal of ethyl acetate over Ce/Zr promoted copper/ZSM-5 catalysts[J]. Chem Eng J, 2016,285(1):536-543.  

    19. [19]

      DOU B J, LI S M, LIU D L, ZHAO R Z, LIU J G, HAO Q L, BIN F. Catalytic oxidation of ethyl acetate and toluene over Cu-Ce-Zr supported ZSM-5/TiO2 catalysts[J]. RSC Adv, 2016,6(59):53852-53859. doi: 10.1039/C6RA06421C

    20. [20]

      WANG Y L, ZHANG S N, MAI Y W, WAN Y Z, LIM S H, HE F, HUANG Y. Preparation and Thermo-Mechanical Characterization of Hydroxyapatite/Bacterial Cellulose Nanocomposites[J]. Nanotech Precis Eng, 2009,7(2):95-101.  

    21. [21]

      ZHANG Q L, XU L S, NING P, GU J J, GUAN Q Q. Surface characterization studies of CuO-CeO2-ZrO2 catalysts for selective catalytic reduction of NO with NH3[J]. Appl Surf Sci, 2014,317:955-961. doi: 10.1016/j.apsusc.2014.09.017

    22. [22]

      ZHOU G L, LAN H, GAO T T, XIE H M. Influence of Ce/Cu ratio on the performance of ordered mesoporous CeCu composite oxide catalysts[J]. Chem Eng J, 2014,246(15):53-63.  

    23. [23]

      ZHANG Y W, WEN J, WANG J, PAN D C, SHEN M Q, LU Y F. Synthesis of monodisperse CexZr1-xO2 nanocrystals and the size-dependent enhancement of their properties[J]. Nano Res, 2011,4(5):494-504. doi: 10.1007/s12274-011-0105-1

    24. [24]

      CAI T, HUANG H, DENG W, DAI Q G, LIU W, WANG X Y. Catalytic combustion of 1, 2-dichlorobenzene at low temperature over Mn-modified Co3O4 catalysts[J]. Appl Catal B:Environ, 2015,166-167:393-405. doi: 10.1016/j.apcatb.2014.10.047

    25. [25]

      HE C, YU Y K, YUE L, QIAO N L, LI J J, SHEN Q, YU W J, CHEN J S, HAO Z P. Low-temperature removal of toluene and propanal over highly active mesoporous CuCeOx catalysts synthesized via a simple self-precipitation protocol[J]. Appl Catal B:Environ, 2014,147:156-166. doi: 10.1016/j.apcatb.2013.08.039

    26. [26]

      RIVAS B, LÓPEZ-FONSECA R, GUTIÉRREZ-ORTIZ MÁ, GUTIÉRREZ-ORTIZ J I. Combustion of chlorinated VOCs using K-CeZrO4 catalysts[J]. Catal Today, 2011,176(1):470-473. doi: 10.1016/j.cattod.2010.10.044

    27. [27]

      YANG P, YANG S S, SHI Z N, MENG Z H, ZHOU R X. Deep oxidation of chlorinated VOCs over CeO2-based transition metal mixed oxide catalysts[J]. Appl Catal B:Environ, 2015,162:227-235. doi: 10.1016/j.apcatb.2014.06.048

    28. [28]

      LIAO Y N, FU M L, CHEN L M, WU J L, HUANG B C, YE D Q. Catalytic oxidation of toluene over nanorod-structured Mn-Ce mixed oxides[J]. Catal Today, 2013,216(1):200-228.  

    29. [29]

      LU H F, ZHOU Y, HAN W F, HUANG H F, CHEN Y F. Promoting effect of ZrO2 carrier on activity and thermal stability of CeO2-based[J]. Appl Catal A:Gen, 2013,464:101-108.  

  • 加载中
    1. [1]

      Xinghong CaiQiang YangYao TongLanyin LiuWutang ZhangSam ZhangMin Wang . AlO2: A novel two-dimensional material with a high negative Poisson's ratio for the adsorption of volatile organic compounds. Chinese Chemical Letters, 2025, 36(2): 109586-. doi: 10.1016/j.cclet.2024.109586

    2. [2]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    3. [3]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    7. [7]

      Shijie Li Ke Rong Xiaoqin Wang Chuqi Shen Fang Yang Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005

    8. [8]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    9. [9]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    12. [12]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    15. [15]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    16. [16]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    17. [17]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    18. [18]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    19. [19]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    20. [20]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

Metrics
  • PDF Downloads(1)
  • Abstract views(815)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return