Citation: WANG Gai, BO Qiong, YANG Dong-hua, LI Yu-peng, ZHAO Yu, GE Chao. Synthesis and electrochemical evaluation of nano-NiO-Y composite cathode material for hydrogen evolution in microbial electrolysis cell[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(6): 762-768. shu

Synthesis and electrochemical evaluation of nano-NiO-Y composite cathode material for hydrogen evolution in microbial electrolysis cell

  • Corresponding author: WANG Gai, 
  • Received Date: 11 January 2019
    Revised Date: 23 April 2019

    Fund Project: The project was supported by the Natural Science Foundation of Shanxi Province, China(201701D121028) and National Natural Science Foundation of China(21802101)the Natural Science Foundation of Shanxi Province, China 201701D121028National Natural Science Foundation of China 21802101

Figures(8)

  • Nano Y zeolites were synthesized by adding carbon spheres into the synthesis sol of Y zeolites subjected to aging and hydrothermal crystallization; nickel-salt precursors were then loaded by using an incipient-wetness impregnation (IWI) method. After calcination, the nano-NiO-Y composite were then characterized by means of XRD, SEM, TEM, XPS, TG-DTG, and N2 adsorption-desorption techniques and its performance as the cathode material for hydrogen evolution in microbial electrolysis cell was then investigated. The results show that the nano-NiO-Y composite has a crystal size of 500 nm of size and multiple porous structure including micro and mesopores; the total surface area and pore volume of nano-NiO-Y composites are 774.3 m2/g and 0.495 cm3/g, respectively. The electrochemical tests of linear scanning voltammetry and Tafel plots show that as microbial electrolytic cell (MEC) cathode, the nano-NiO-Y composite with a nickel-salt loading of 30% exhibits high electrocatalytic activity. In a continuous operation cycle, the largest hydrogen evolution current density of the nano-NiO-Y composites reaches 22.87 A/m2, and the H2 content is about 73.71% in total gas. The hydrogen production efficiency is 0.393 m3/(m3·d), comparable to that of Pt/C cathode.
  • 加载中
    1. [1]

      HAN Cheng, LEI Yong-peng, WANG Ying-de. Rent progress on nano-heterostructure photocatalysts for solar fuels generation[J]. J Inor Mater, 2015,30(11):1121-1130.  

    2. [2]

      WANG B, WANG Y D, LEI Y P, WANG B, WU N, SHI Q, LI Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation[J]. Nano Res, 2015,8(4):1199-1209. doi: 10.1007/s12274-014-0600-2

    3. [3]

      CHENG S, LODAN B E. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing[J]. Bioresour Technol, 2011,102(3):3571-3574. doi: 10.1016/j.biortech.2010.10.025

    4. [4]

      ZHANG K, KIM J K, PARK B, QIAN S F, JIN B J, SHENG X W, ZENG H B, SHIN H J, OH S H, LEE C L, PARK J H. Defect-induced epitaxial growth for efficient solar hydrogen production[J]. Nano Lett, 2017,17(11):6676-6683. doi: 10.1021/acs.nanolett.7b02622

    5. [5]

      ZHAO W, FIERRO V, FERNÁNDEZ-HUERTA N, IZQUIERDO M T, CELZARD A. Hydrogen uptake of high surface area-activated carbons doped with nitrogen[J]. Int J Hydrogen Energy, 2013,38(25):10453-10460. doi: 10.1016/j.ijhydene.2013.06.048

    6. [6]

      GRUBLE T, DORÉ L, HOFFRICHTER A, HOMBACH L E, RATHS S, ROBINIUS M, NOBIS M, SCHIEBAHN S, TIETZE V, SCHNETTLER A, WALTHER G, STOLTEN D. An option for stranded renewables:Electrolytic-hydrogen in future energy systems[J]. Sustainable Energy Fuels, 2018,2(5):1500-1515.  

    7. [7]

      KUMAR G, LIN C Y. Biogenic hydrogen conversion of de-oiled Jatropha waste (DJW) via anaerobic sequencing batch reactor operation:Process performance, microbial insights and CO2 reduction efficiency[J]. Sci World J, 2014:1-9.

    8. [8]

      SIRISINUDOMKIT P, IAMPRASERTKUN P, KRITTAYAVATHANANON A, PETTONG T, DITTANET P, KIDKHUNTHOD P, SAWANGPHRUK M. Hybrid energy storage of battery-type nickel hydroxide and supercapacitor-type graphene:Redox additive and charge storage mechanism[J]. Sustainable Energy Fuels, 2017,1:275-279. doi: 10.1039/C7SE00052A

    9. [9]

      WANG B, WANG Y D, LEI Y P, WU N, GOU Y Z, HAN C, XIE S, FANG D. Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production[J]. Nano Res, 2016,9(3):886-898. doi: 10.1007/s12274-015-0971-z

    10. [10]

      KHAIRY M, ELSAFTY S A. Mesoporous NiO nanoarchitectures for electrochemical energy storage:Influence of size, porosity, and morphology[J]. Rsc Adv, 2013,3(45):23801-23809. doi: 10.1039/c3ra44465a

    11. [11]

      ZHOU Y X, LEI Y P, WANG D S, CHEN C, PENG Q, LI Y D. Ultra-thin Cu2S nanosheets:Effective cocatalysts for photocatalytic hydrogen production[J]. Chem Commun, 2015,51(68):13305-13308. doi: 10.1039/C5CC05156H

    12. [12]

      DAI H Y, YANG H M, LIU X, JIAN X, LIANG Z H. Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Fuel, 2016,174:251-256. doi: 10.1016/j.fuel.2016.02.013

    13. [13]

      LU L, XING G F, XIE T H, REN N Q, LOGAN B E. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells[J]. Biosens Bioelectron, 2010,25(12):2690-2695. doi: 10.1016/j.bios.2010.05.003

    14. [14]

      DONG Z S, ZHAO Y, FAN L, WANG Y X, WANG J W, ZHANG K. Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell[J]. Int J Electrochem Sci, 2017,12(11):10553-10566.  

    15. [15]

      ALHAJRI N, ANJUM D, TAKANABE K. Molybdenum carbide-carbon nanocomposites synthesized from a reactive template for electrochemical hydrogen evolution[J]. J Mater Chem A, 2014,2(27):10548-10556. doi: 10.1039/C4TA00577E

    16. [16]

      CHEN W F, WANG C H, SASAKI K, MARINKOVIC N, XU W, MUCKERMAN J T, ZHU Y, ADZIC R R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production[J]. Energy Environ Sci, 2013,6(3):943-951. doi: 10.1039/c2ee23891h

    17. [17]

      QU Yong-liang. Technological innovation research of Y zeolite preparation process[D]. Beijing: Beijing University of Chemical Technology, 2015. 

    18. [18]

      HU Li, YANG Dong-hua, ZHAO Yu, DONG Zhi-shuai, WANG Gai, BO Qiong. Synthesis of NiY zeolite for hydroden evolution performance study in cathode of microbial electrolysis cell[J]. J Fuel Chem Technol, 2018,46(5):106-113.  

    19. [19]

      ZHENG Z L, SUN C, DAI R, WANG S Y, WU X, AN X, XIE X M. Organotemplate-free synthesis of hollow Beta zeolite supported Pt-based catalysts for low-temperature ethanol steam reforming[J]. Catal Sci Technol, 2016,6(17):6472-6475. doi: 10.1039/C6CY01354F

    20. [20]

      ZHOU W W, ZHOU Y S, WEI Q W, DING S J, JIANG S J, ZHANG Q, LIU M F. Continuous synthesis of mesoporous Y zeolites from normal inorganic aluminosilicates and their high adsorption capacity for dibenzothiophene(DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT)[J]. Chem Eng J, 2017,330(8):605-615.  

    21. [21]

      LIU Ai-yuan, ZHANG Xi-wen, HAN Gao-rong. Preparation and properties of NiO films via sol-gel process and spin-coating[J]. J Mater Sci Eng, 2010,28(6):896-899.  

    22. [22]

      ZHENG Z L, YANG D H, LI T T, YIN X M, WANG S Y, WU X, AN X, XIE X M. A novel BEA-type zeolite core-shell multiple catalyst for hydrogen-rich gas production from ethanol steam reforming[J]. Catal Sci Technol, 2016,6(14):5427-5439. doi: 10.1039/C6CY00119J

    23. [23]

      REN Bin. Characterization and application of functional nanomaterials prepared by using carbon spheres as templates[D]. Chongqing: Chongqing University, 2016. 

    24. [24]

      LI De-bao, XI Hong-Juan, HOU Bo, LIN Ming-gui, JIA Li-tao. A Preparation method of smallgrain ZSM-22 molecular sieve. CN, 105565339A[P]. 2016-05-11. 

    25. [25]

      YANG Dong-hua, SHI Bao-bao, WANG Xin-bo, WU Zheng-huang, DOU Tao, ZHENG Zi-liang, DAI Rong. Synthesis and characterization of a new type silicoaluminophophate SAPO-53 molecular sieves[J]. J Fuel Chem Technol, 2014,42(5):625-634.  

    26. [26]

      CUI Zhen-zhen, YIN Hao-yong, ZHAO Hong-ting, NIE Qiu-lin. Preparation and glucose sensing property of core-shelled nikel oxide/carbon microspheres[J]. J Inorg Mater, 2015,30(3):305-310.  

    27. [27]

      ZHAO Q, ZHONG D, LIU L, LI D D, HAO G Y, LI J P. Facile fabrication of robust 3D Fe-NiSe nanowires supported on nickel foam as a highly efficient, durable oxygen evolution catalyst[J]. J Mater Chem A, 2017,5(28):14639-14645. doi: 10.1039/C7TA03095A

    28. [28]

      SOLEIMANI E, MOHAMMADI M. Synthesis, characterization and properties of polystyrene/NiO nanocomposites[J]. J Mater Sci Mater Electron, 2018,29(11):9494-9508. doi: 10.1007/s10854-018-8983-6

    29. [29]

      DAI Hong-yan, YANG Hui-min, LIU Xian, JIAN Xuan, GUO Min-min, CAO Le-le, LIANG Zhen-hai. Preparation and electrochemical evaluation of MoS2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Chem J Chin Univ, 2018,39(2):351-358.  

    30. [30]

      CHO G, KIM H, PARK Y S, HONG Y K, HA D H. Phase transformation of iron phosphide nanoparticles for hydrogen evolution reaction electrocatalysis[J]. Int J Hydrogen Energy, 2018,43(24):11326-11334. doi: 10.1016/j.ijhydene.2018.02.197

    31. [31]

      LI Z C, MA J J, ZHOU Y, YIN Z G, TANG Y B, MA Y X, WANG D B. Synthesis of sulfur-rich MoS2, nanoflowers for enhanced hydrogen evolution reaction performance[J]. Electrochim Acta, 2018,283(1):306-312.  

    32. [32]

      WANG A, LIU W, CHENG S, XING D F, ZHOU J Z, LOGAN B E. Source of methane and methods to control its formation in single chamber microbial electrolysis cells[J]. Int J Hydrogen Energy, 2009,34(9):3653-3658. doi: 10.1016/j.ijhydene.2009.03.005

  • 加载中
    1. [1]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    6. [6]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    7. [7]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    8. [8]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    9. [9]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    10. [10]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    11. [11]

      Bowen Yang Rui Wang Benjian Xin Lili Liu Zhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 100015-. doi: 10.3866/PKU.WHXB202310024

    12. [12]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    15. [15]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    16. [16]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    17. [17]

      Pengcheng Yan Peng Wang Jing Huang Zhao Mo Li Xu Yun Chen Yu Zhang Zhichong Qi Hui Xu Henan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 100014-. doi: 10.3866/PKU.WHXB202309047

    18. [18]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

Metrics
  • PDF Downloads(7)
  • Abstract views(1200)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return