Citation: LI Zuo-peng, SHANG Jian-peng, SU Cai-na, ZHANG San-bing, WU Mei-xia, GUO Yong. Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 473-478. shu

Preparation of amorphous NiP-based catalysts for hydrogen evolution reactions

  • Corresponding author: WU Mei-xia, wmxiccas@iccas.ac.cn GUO Yong, ybsy_guo@163.com
  • Received Date: 13 December 2017
    Revised Date: 2 February 2018

    Fund Project: Science, Technology Innovation Project of Shanxi Province University 2015178The project was supported by National Natural Science Foundation of China 21073113Natural Science Foundortion of Datong 2015108Natural Science Foundation of Shanxi 201701D121016The project was supported by National Natural Science Foundation of China (21073113), Natural Science Foundation of Shanxi (201701D121016) and Science, Technology Innovation Project of Shanxi Province University (2015178, 2016172), Natural Science Foundortion of Datong(2015108)Science, Technology Innovation Project of Shanxi Province University 2016172

Figures(7)

  • Amorphous alloy NiP and its carbon composite catalysts NiP/C and NiP/reduced graphene oxide (RGO) were successfully one-pot synthesized using NaH2PO2 and NiSO4 as phosphorus and nickel source, respectively. The electrocatalysts were characterized with transmission electron microscope (TEM), X-ray diffraction spectrometer (XRD), inductively coupled plasma analysis (ICP) and thermogravimetric analysis (TG), respectively. The hydrogen evolution reactions (HER) performance of the electrocatalysts was evaluated with a linear sweep voltammetry method in both acidic and alkaline solution. Among them, NiP/RGO elctrocatalyst exhibited 89.0 mV onset overpotential and Tafel slope 135.1 mV/decade in acidic solution, as well as 116.1 mV onset overpotential and Tafel slope 122.4 mV/decade in alkaline solution with excellent long-term stability. Results indicated that the NiP/RGO was a very active catalyst.
  • 加载中
    1. [1]

      DUNN S. Hydrogen futures:Toward a sustainable energy system[J]. Int J Hydrogen Energy, 2002,27(3):235-264. doi: 10.1016/S0360-3199(01)00131-8

    2. [2]

      NEJAT V T, SUEMER S. 21st Century's energy:Hydrogen energy system[J]. Energy Convers Manage, 2008,49(7):1820-1831. doi: 10.1016/j.enconman.2007.08.015

    3. [3]

      SHERIF S A, BARBIR F, VEZIROGLU T N. Wind energy and the hydrogen economy-review of the technology[J]. Sol Energy, 2005,78(5):647-660. doi: 10.1016/j.solener.2005.01.002

    4. [4]

      EFTEKHARI A. Electrocatalysts for hydrogen evolution reaction[J]. Int J Hydrogen Energy, 2017,42(16):11053-11077. doi: 10.1016/j.ijhydene.2017.02.125

    5. [5]

      WANG J, XU F, JIN H, CHEN Y, WANG Y. Non-noble metal-based carbon composites in hydrogen evolution reaction:Fundamentals to applications[J]. Adv Mater, 2017,29(14)1605838. doi: 10.1002/adma.v29.14

    6. [6]

      ZHENG Y, JIAO Y, ZHU Y, LI L, HAN Y, CHEN Y, DU A, JARONIEC M, QIAO S. Hydrogen evolution by a metal-free electrocatalyst[J]. Nat Commun, 2014,5(4)3783.  

    7. [7]

      POPCZUN E J, MCKONE J R, READ C G, BIACCHI A J, WILTROUT A M, LEWIS N S, SCHAAK R E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. J Am Chem Soc, 2013,135(25):9267-9270. doi: 10.1021/ja403440e

    8. [8]

      XIAO P, CHEN W, WANG X. A review of phosphide-based materials for electrocatalytic hydrogen evolution[J]. Adv Energy Mater, 2015,5(24)1500985. doi: 10.1002/aenm.201500985

    9. [9]

      SHI Y, ZHANG B. Recent advances in transition metal phosphide nanomaterials:Synthesis and applications in hydrogen evolution reaction[J]. Chem Soc Rev, 2016,25(6):1529-1541.  

    10. [10]

      ANDARAARACHCHI H P, THOMPSON M J, WHITE M A, FAN H, VELA J. Phase-programmed nanofabrication:Effect of organophosphite precursor reactivity on the evolution of nickel and nickel phosphide nanocrystals[J]. Chem Mater, 2015,27(23):8021-8031. doi: 10.1021/acs.chemmater.5b03506

    11. [11]

      LI D, SENEVIRATHNE K, AQUILINA L, BROCK S L. Effect of synthetic levers on nickel phosphide nanoparticle formation:Ni5P4 and NiP2[J]. Inorg Chem, 2015,54(16):7968-7975. doi: 10.1021/acs.inorgchem.5b01125

    12. [12]

      PAN Y, LIU Y, ZHAO J, YANG K, LIANG J, LIU D, HU W, LIU D, LIU Y, LIU C. Monodispersed nickel phosphide nanocrystals with different phases:Synthesis, characterization and electrocatalytic properties for hydrogen evolution[J]. J Mater Chem A, 2015,3(4):1656-1665. doi: 10.1039/C4TA04867A

    13. [13]

      PAN Y, HU W, LIU D, LIU Y, LIU C. Carbon nanotubes decorated with nickel phosphide nanoparticles as efficient nanohybrid electrocatalysts for the hydrogen evolution reaction[J]. J Mater Chem A, 2015,3(24):13087-13094. doi: 10.1039/C5TA02128F

    14. [14]

      PAN Y, LIU Y, LIU C. Nanostructured nickel phosphide supported on carbon nanospheres:Synthesis and application as an efficient electrocatalyst for hydrogen evolution[J]. J Power Sources, 2015,285:169-177. doi: 10.1016/j.jpowsour.2015.03.097

    15. [15]

      LIN Y, ZHANG J, PAN Y, LIU Y. Nickel phosphide nanoparticles decorated nitrogen and phosphorus co-doped porous carbon as efficient hybrid catalyst for hydrogen evolution[J]. Appl Surf Sci, 2017,422:828-837. doi: 10.1016/j.apsusc.2017.06.102

    16. [16]

      PAN Y, YANG N, CHEN Y, LIN Y, LI Y, LIU Y, LIU C. Nickel phosphide nanoparticles nitrogen-doped graphene hybrid as an efficient catalyst for enhanced hydrogen evolution activity[J]. J Power Sources, 2015,297:45-52. doi: 10.1016/j.jpowsour.2015.07.077

    17. [17]

      WANG P, PU Z, LI Y, WU L, TU Z, JIANG M, KOU Z, SAANA AMⅡNU I, MU S. Iron-doped nickel phosphide nanosheet arrays:an efficient bifunctional electrocatalyst for water splitting[J]. ACS Appl Mater Interfaces, 2017,9(31):26001-26007. doi: 10.1021/acsami.7b06305

    18. [18]

      OYAMA S T. Novel catalysts for advanced hydroprocessing:transition metal phosphides[J]. J Catal, 2003,216(1):343-352.  

    19. [19]

      SAWHILL S J, PHILLIPS D C, BUSSELL M E. Thiophene hydrodesulfurization over supported nickel phosphide catalysts[J]. J Catal, 2003,215(2):208-219. doi: 10.1016/S0021-9517(03)00018-6

    20. [20]

      OYAMA S T, LEE Y. The active site of nickel phosphide catalysts for the hydrodesulfurization of 4, 6-DMDBT[J]. J Catal, 2008,258(2):393-400. doi: 10.1016/j.jcat.2008.06.023

    21. [21]

      MERKI D, HU X. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts[J]. Energy Environ Sci, 2011,4(10):3878-3888. doi: 10.1039/c1ee01970h

    22. [22]

      PRINS R, DE BEER V H J, SOMORJAI G A. Structure and function of the fatalyst and the promoter in Co-Mo hydrodesulfurization catalysts[J]. Catal Rev, 1989,31(1/2):1-41.  

    23. [23]

      MA Q, SONG J, JIN C, LI Z, LIU J, MENG S, ZHAO J, GUO Y. A rapid and easy approach for the reduction of graphene oxide by formamidinesulfinic acid[J]. Carbon, 2013,54(8):36-41.  

    24. [24]

      WAN L, ZHANG J, CHEN Y, ZHONG C, HU W, DENG Y. Nickel phosphide nanosphere:A high-performance and cost-effective catalyst for hydrogen evolution reaction[J]. Int J Hydrogen Energy, 2016,41(45):20515-20522. doi: 10.1016/j.ijhydene.2016.08.146

    25. [25]

      YANG L, WU X, ZHU X, HE C, MENG GAN Z, CHU P K. Amorphous nickel/cobalt tungsten sulfide electrocatalysts for high-efficiency hydrogen evolution reaction[J]. Appl Surf Sci, 2015,341:149-156. doi: 10.1016/j.apsusc.2015.03.018

  • 加载中
    1. [1]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    2. [2]

      Yi ZHANGGuang LIWenxuan FANQingfeng YI . Influence of bismuth trisulfide on the electrochemical performance of iron electrode. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1196-1206. doi: 10.11862/CJIC.20240445

    3. [3]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    4. [4]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    5. [5]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    8. [8]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    9. [9]

      Guoliang GaoGuangzhen ZhaoGuang ZhuBowen SunZixu SunShunli LiYa-Qian Lan . Recent advancements in noble-metal electrocatalysts for alkaline hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(1): 109557-. doi: 10.1016/j.cclet.2024.109557

    10. [10]

      Jing CaoDezheng ZhangBianqing RenPing SongWeilin Xu . Mn incorporated RuO2 nanocrystals as an efficient and stable bifunctional electrocatalyst for oxygen evolution reaction and hydrogen evolution reaction in acid and alkaline. Chinese Chemical Letters, 2024, 35(10): 109863-. doi: 10.1016/j.cclet.2024.109863

    11. [11]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    12. [12]

      Bowen LiTing WangMing XuYuqi WangZhaoxing LiMei LiuWenjing ZhangMing Feng . Structuring MoO3-polyoxometalate hybrid superstructures to boost electrocatalytic hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(2): 110467-. doi: 10.1016/j.cclet.2024.110467

    13. [13]

      Hongliang ZengYuan JiJinfeng WenXu LiTingting ZhengQiu JiangChuan Xia . Pt nanocluster-catalyzed hydrogen evolution reaction: Recent advances and future outlook. Chinese Chemical Letters, 2025, 36(3): 109686-. doi: 10.1016/j.cclet.2024.109686

    14. [14]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    15. [15]

      Xinghui YaoZhouyu WangDa-Gang Yu . Sustainable electrosynthesis: Enantioselective electrochemical Rh(III)/chiral carboxylic acid-catalyzed oxidative CH cyclization coupled with hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(9): 109916-. doi: 10.1016/j.cclet.2024.109916

    16. [16]

      Lizhang Chen Yu Fang Mingxin Pang Ruoxu Sun Lin Xu Qixing Zhou Yawen Tang . Interfacial engineering of core/satellite-structured RuP/RuP2 heterojunctions for enhanced pH-universal hydrogen evolution reaction. Chinese Journal of Structural Chemistry, 2025, 44(1): 100461-100461. doi: 10.1016/j.cjsc.2024.100461

    17. [17]

      Mianfeng LiHaozhi WangZijun YangZexiang YinYuan LiuYingmei BianYang WangXuerong ZhengYida Deng . Synergistic enhancement of alkaline hydrogen evolution reaction by role of Ni-Fe LDH introducing frustrated Lewis pairs via vacancy-engineered. Chinese Chemical Letters, 2025, 36(3): 110199-. doi: 10.1016/j.cclet.2024.110199

    18. [18]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    19. [19]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    20. [20]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

Metrics
  • PDF Downloads(6)
  • Abstract views(1027)
  • HTML views(106)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return